
StrainDesign
Release 1.11

Philipp Schneider

Jan 10, 2024

CONTENTS:

1 A COBRApy-based package for computational design of metabolic networks 3

2 Installation: 5
2.1 Developer Installation: . 5
2.2 JAVA_HOME path: . 5

3 Examples: 7

4 How to cite: 9
4.1 Solvers . 9

4.1.1 3rd party solver installation . 9
4.1.1.1 CPLEX . 9
4.1.1.2 Gurobi . 10
4.1.1.3 SCIP . 11

4.1.2 Solver selection . 11
4.2 Network Analysis . 12

4.2.1 Flux optimization (FBA/pFBA) . 12
4.2.1.1 Parsimonious FBA (pFBA) . 13

4.2.2 Flux variability analysis (FVA) . 14
4.2.3 Yield optimization . 15

4.2.3.1 Mathematical background . 15
4.3 Plotting the flux space . 16

4.3.1 Production Envelopes . 16
4.3.2 Yield Spaces . 19
4.3.3 Mixed Plots . 19
4.3.4 3D plots . 21

4.3.4.1 Interactive and animated 3D plots . 22
4.4 Computational strain design: Growth-coupled production (GCP) . 23

4.4.1 pGCP: potentially growth-coupled production . 24
4.4.2 wGCP: weakly growth-coupled production . 25
4.4.3 dGCP: directionally growth-coupled production . 25
4.4.4 SUCP: substrate-uptake-coupled production . 26

4.5 Minimal Cut Sets (MCS) . 27
4.5.1 Prerequisites . 27

4.5.1.1 1) Add and verify production pathway . 28
4.5.2 Example 1: Strain designs with a minimum product (1,4-butanediol) yield (SUCP strain design) 29
4.5.3 Example 2: Enforce product (1,4-BDO) synthesis at all growth states (dGCP strain design) . 39
4.5.4 Example 3: Suppress flux states that are optimal with respect to a pre-defined objective func-

tion (wGCP strain design) . 44

i

4.5.5 Example 4: Protect flux states that are optimal with respect to a pre-defined objective function
(pGCP strain design) . 47

4.5.6 Example 5: All single gene knockouts that prohibit growth (synthetic lethals). 49
4.5.7 Example 6: Genome-scale strain designs with a minimum product (1,4-butanediol) yield

(SUCP strain design) . 51
4.5.8 Example 7: Suppress flux states in a toy network . 59
4.5.9 Example 8: Suppress and protect flux states in a toy network 61
4.5.10 Theoretical background . 62

4.6 Multi-level strain optimization approaches . 63
4.6.1 OptKnock . 65

4.6.1.1 Example 9: OptKnock strain design . 65
4.6.1.2 Example 10: OptKnock strain design with a tilted objective function 68
4.6.1.3 Example 11: Genome-scale OptKnock strain design 71

4.6.2 RobustKnock . 76
4.6.2.1 Example 12: RobustKnock strain design . 76

4.6.3 OptCouple . 79
4.6.3.1 Example 13: OptCouple strain design . 80

4.6.4 Combining nested optimization strain design with MCS . 82
4.6.4.1 Example 14: Combining OptKnock with a tilted objective function and the MCS

approach . 82
4.7 Standalone network compression . 85

4.7.1 Standalone GPR-integraton . 86
4.7.1.1 Gene perturbation studies . 87

4.8 CNApy interface . 88
4.9 StrainDesign API . 89

4.9.1 straindesign . 89
4.9.1.1 Submodules . 89
4.9.1.2 Package Contents . 139

5 References: 141

6 Indices and tables 143

Python Module Index 145

Index 147

ii

StrainDesign, Release 1.11

CONTENTS: 1

https://github.com/klamt-lab/straindesign/releases
https://pypi.org/project/straindesign/
https://anaconda.org/cnapy/straindesign/
https://readthedocs.org/projects/straindesign/builds/
https://pypi.org/project/straindesign/
https://github.com/klamt-lab/straindesign/actions/workflows/CI-test.yml
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html

StrainDesign, Release 1.11

2 CONTENTS:

CHAPTER

ONE

A COBRAPY-BASED PACKAGE FOR COMPUTATIONAL DESIGN OF
METABOLIC NETWORKS

The comprehensive StrainDesign package for MILP-based strain design computation with the COBRApy toolbox sup-
ports MCS, MCS with nested optimization, OptKnock , RobustKnock and OptCouple , GPR-rule integration, gene
and reaction knockouts and additions as well as regulatory interventions. The automatic lossless network and GPR
compression allows strain design computations from genome-scale metabolic networks. Supported solvers are GLPK
(available from COBRApy), CPLEX, Gurobi and SCIP .

Parts of the compression routine is done by efmtool’s compression function (https://csb.ethz.ch/tools/software/efmtool.
html).

3

https://csb.ethz.ch/tools/software/efmtool.html
https://csb.ethz.ch/tools/software/efmtool.html

StrainDesign, Release 1.11

4 Chapter 1. A COBRApy-based package for computational design of metabolic networks

CHAPTER

TWO

INSTALLATION:

The StrainDesign package is available on pip and Anaconda. To install the latest release, run:

pip install straindesign

or

conda install -c cnapy straindesign

2.1 Developer Installation:

Download the repository and run

pip install -e .

in the main folder. Through the installation with -e, updates from a ‘git pull’ are at once available in your Python
envrionment without the need for a reinstallation.

2.2 JAVA_HOME path:

In some cases, installing the StrainDesign python package may fail with the error:

JVMNotFoundException: No JVM shared library file (libjli.dylib) found. Try setting up the
JAVA_HOME environment variable.

In this case, make sure Java is installed correctly and the JAVA_HOME varialbe is set. JAVA_HOME environment
variable

If you’re on OS X and get the error

OSError: [Errno 0] JVM DLL not found

check that your Java and the JPype library is set up correctly. The easiest way to avoid this error is to use conda to
install StrainDesign.

5

https://www.baeldung.com/java-home-on-windows-7-8-10-mac-os-x-linux
https://www.baeldung.com/java-home-on-windows-7-8-10-mac-os-x-linux
https://github.com/jpype-project/jpype/issues/994

StrainDesign, Release 1.11

6 Chapter 2. Installation:

CHAPTER

THREE

EXAMPLES:

Computation examples are provided in the different chapters of this documentation. The original Jupyer notebook files
are located in the StrainDesign package at docs/source/examples.

7

https://github.com/klamt-lab/straindesign/tree/main/docs/source/examples

StrainDesign, Release 1.11

8 Chapter 3. Examples:

CHAPTER

FOUR

HOW TO CITE:

Schneider P., Bekiaris P. S., von Kamp A., Klamt S. - StrainDesign: a comprehensive Python package for computational
design of metabolic networks. Bioinformatics, btac632 (2022)

4.1 Solvers

4.1.1 3rd party solver installation

Through COBRApy, StrainDesign is already shipped with the free GLPK linear programming solver. Alternatively,
the more powerful commercial solvers IBM CPLEX and Gurobi can be used by both COBRApy and StrainDesign,
and the free solver SCIP can be used by StrainDesign. Using one of the GLPK alternatives is preferred, in particular,
when using strain design algorithms like MCS, OptKnock etc. since their support of indicator contstraints renders
computations significantly more stable.

In the following, you will find installation instructions for the individual solvers.

Warning:
The free community versions of CPLEX and Gurobi can be used. However, with larger problems (100+ reactions)
their problem size limitations may result in uncaught errors.

4.1.1.1 CPLEX

Together with Gurobi, CPLEX is the perfect choice for computing strain designs. Its stability and support of advanced
features like indicator constraints and populating solution pools make it indispensible for genome-scale computations.

Note:
You will need an academic or commercial licence to be able to use CPLEX.

Download and install the CPLEX suite to a location with non-root access since python will need to build some things
to set up the CPLEX-API, later. Make sure that your CPLEX and Python versions are compatible. Currently (De-
cember 2023), CPLEX is not officially available for python>3.10. Once the installation is completed, you may use the
installation to set up the CPLEX-API with your Python/conda environment.

This can be done either with pip

pip install yourCPLEXhome/python/VERSION/PLATFORM

9

https://doi.org/10.1093/bioinformatics/btac632
https://doi.org/10.1093/bioinformatics/btac632
https://www.ibm.com/de-de/products/ilog-cplex-optimization-studio
https://www.gurobi.com/
https://scipopt.org/

StrainDesign, Release 1.11

or with conda. For an installation with conda, make sure to activate the same Python/conda environment where cobra
and straindesign are installed. Then call

python yourCPLEXhome/python/VERSION/PLATFORM/setup.py install

Now CPLEX should be available for your computations. If you face difficulties with building CPLEX, consider down-
grading the setuptools package to setuptools==58.2.0.

The official instructions can be found here: https://www.ibm.com/docs/en/icos/22.1.0?topic=
cplex-setting-up-python-api

4.1.1.2 Gurobi

Similar to CPLEX, Gurobi offers a fast MILP solvers with the advanced features of indicator constraints and solution
pooling. The installation steps are similar to the ones of CPLEX.

Note:
You will need an academic or commercial license and install the Gurobi solver software.

Ensure that the versions of Gurobi and Python versions are compatible, install Gurobi on your system and activate your
license following the steps from the Gurobi manual. In the next step you will link your Gurobi installation to your
Python/conda environment.

Using the command line, navigate to your CPLEX installation path and into the Python folder. The path should look
similar to

C:/gurobi950/windows64

Make sure to activate the same Python/conda environment where cobra and straindesign are installed. Then call

python setup.py install

If your gurobipy package does not work right away, additionally install the gurobi package from conda or PyPi via

conda install -c gurobi gurobi

or

python -m pip install gurobipy

Now Gurobi is available for your computations.

The official instructions can be found here: https://support.gurobi.com/hc/en-us/articles/
360044290292-How-do-I-install-Gurobi-for-Python-

10 Chapter 4. How to cite:

https://www.ibm.com/docs/en/icos/22.1.0?topic=cplex-setting-up-python-api
https://www.ibm.com/docs/en/icos/22.1.0?topic=cplex-setting-up-python-api
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python
https://support.gurobi.com/hc/en-us/articles/360044290292-How-do-I-install-Gurobi-for-Python

StrainDesign, Release 1.11

4.1.1.3 SCIP

Less powerful than CPLEX and Gurobi, the open source solver SCIP still offers the solution of MILPs with indicator
constraints, which gives it an edge above GLPK in terms of stability. If you want to use SCIP, you may install it via
conda or pip:

conda install -c conda-forge pyscipopt

or

python -m pip install pyscipopt

Warning:
If you encounter program crashes with SCIP (a dependency of pyscipopt), make sure you use a SCIP version of
8.0.0 or older since newer versions are unreliable in solving MILPs and can produce errors (as of December 2023),
this issue might get fixed in the future. You can, manually install pyscipopt 4.2.0 and scip version 8.0.0 through
conda install -c conda-forge pyscipopt=4.2.0 scip=8.0.0. Keep in mind that SCIP 4.2.0 is currently
(December 2023) not available for python>3.10.

Official website: https://github.com/scipopt/PySCIPOpt

4.1.2 Solver selection

For any type of LP or MILP-based analysis or design method, four different sovers are supported: GLPK (which is
built into COBRApy/optlang), IBM CPLEX, Gurobi and SCIP. You can query the available solvers by accessing the
set straindesign.avail_solvers. For the subsequent steps we also import the cobra module and load the E. coli
core model.

[1]: import cobra
import straindesign as sd
model = cobra.io.load_model('e_coli_core')

sd.avail_solvers

Set parameter Username
Academic license - for non-commercial use only - expires 2023-07-20

[1]: {'cplex', 'glpk', 'gurobi', 'scip'}

You may enforce the use of a specific solver by specifying the “solver”-keyword. E.g., to enforce the use of GLPK, use:

[2]: solution = sd.fba(model, solver='glpk')

print(f"Maximum growth: {solution.objective_value}.")

Maximum growth: 0.873921506969.

By default, the automatic solver selection uses COBRApy’s selection. Therefore, StrainDesign will try to use the
model’s selected solver:

[3]: print(f"When the model\'s solver is \'{model.solver.configuration}', StrainDesign␣
→˓selects {sd.select_solver(None,model)}.")

4.1. Solvers 11

https://github.com/scipopt/PySCIPOpt

StrainDesign, Release 1.11

When the model's solver is '<optlang.gurobi_interface.Configuration object at␣
→˓0x0000014FE00DA400>', StrainDesign selects gurobi.

Otherwise COBRApy’s global configuration is used.

[4]: print(f"COBRApy\'s solver is \'{cobra.Configuration().solver.__name__}', StrainDesign␣
→˓selects {sd.select_solver()}.")

COBRApy's solver is 'optlang.gurobi_interface', StrainDesign selects gurobi.

[5]: model.solver = 'cplex'
sd.select_solver('glpk',model)

[5]: 'glpk'

4.2 Network Analysis

StrainDesign provides canonical functions for maximizing and minimizing metabolic fluxes in network. The output
format is identical to the ones of COBRApy’s functions.

4.2.1 Flux optimization (FBA/pFBA)

Flux Balance Analysis (FBA) is a linear program that optimizes a flux rate under the given steady-state network con-
straints. For the case of a growth-rate maximization, the problem is written as:

maximize 𝑣𝑔𝑟𝑜𝑤𝑡ℎ

subject to
Sv = 0

lb ≤ v ≤ ub

Where S is the stoichiometric matrix of the metabolic model, v is the vector of metabolic flux rates and lb and ub are
the physiological lower and upper bounds of each flux rate which also define whether a reaction can run in the reverse
direction (lb < 0) or not (lb ≥ 0). Sv = 0 represents all steady-state constraints, and lb ≤ v ≤ ub the allowed flux
ranges.

Note:
All of the following computation examples will require the COBRApy and the StrainDesign package.

Here, we load both packages and the e_coli_core model from BiGG:

[1]: import cobra
import straindesign as sd
model = cobra.io.load_model('e_coli_core')

Set parameter Username
Academic license - for non-commercial use only - expires 2023-07-20

An FBA is launched by a single function call. By default the model’s objective function is optimized. The function
returns a solution object, in which the objective value and the fluxes are stored in solution.objective_value and
solution.fluxes.

12 Chapter 4. How to cite:

StrainDesign, Release 1.11

[2]: solution = sd.fba(model)

print(f"Maximum growth: {solution.objective_value}.")

Maximum growth: 0.8739215069684305.

You may also use a custom objective (in form of a linear expression) and change the optimization sense. Here we
minimize the Glucose uptake rate through the PTS:

[3]: solution = sd.fba(model,obj='GLCpts',obj_sense='minimize')

print(f"Minimum flux through GLCpts: {solution.objective_value}.")

Minimum flux through GLCpts: 0.4794285714285715.

We can also consider custom constraints (in this case limited oxygen uptake and an increased fixed ATP maintenance
demand):

[4]: solution = sd.fba(model,constraints=['-EX_o2_e <= 5', 'ATPM = 20'])

print(f"Maximum growth at limited oxygen uptake and high ATP maintenance: {solution.
→˓objective_value}.")

Maximum growth at limited oxygen uptake and high ATP maintenance: 0.26305573292588313.

4.2.1.1 Parsimonious FBA (pFBA)

Parsimonious flux balance analysis optimizes a flux rate under the given steady-state network constraints, but also
minimizes the sum of absolute fluxes to achieve this optimum. One can write:

minimize Σ|𝑣𝑖|
subject to

maximize 𝑣𝑔𝑟𝑜𝑤𝑡ℎ

subject to
Sv = 0

lb ≤ v ≤ ub

pFBA is the simpleset (although very rough) approach of emulating a cell’s enzyme cost minimization (after an assumed
growth maximization).

Note:
pFBA solutions are more often “unique” than pure FBA solutions, since the outer minimization leaves fewer degrees
of freedom in the solution space.

StrainDesign computes pFBA solutions when you pass the ‘pFBA’-argument with a value of 1.

[5]: fba_sol = sd.fba(model)
pfba1_sol = sd.fba(model,pfba=1)
print(f"The sum of fluxes of the regular FBA: {sum([abs(v) for v in fba_sol.fluxes.
→˓values()])} "+\

f"is usually higher than of the parsimoniuos FBA: {sum([abs(v) for v in pfba1_sol.
→˓fluxes.values()])}")

4.2. Network Analysis 13

StrainDesign, Release 1.11

The sum of fluxes of the regular FBA: 2508.293334194643 is usually higher than of the␣
→˓parsimoniuos FBA: 518.4220855176071

Likewise, it is possible to minimize the number of active reactions to attain an optimal flux distribution. We therefore
use pFBA mode 2. Most of the times modes 1 and 2 yield the same results.

[6]: pfba1_sol = sd.fba(model,pfba=1)
pfba2_sol = sd.fba(model,pfba=2)
print(f"The number of active reactions in pFBA1: {sum([v!=0 for v in pfba1_sol.fluxes.
→˓values()])}, "+\

f"and pFBA2: {sum([v!=0 for v in pfba2_sol.fluxes.values()])}, is often identical.
→˓")

The number of active reactions in pFBA1: 48, and pFBA2: 48, is often identical.

4.2.2 Flux variability analysis (FVA)

The fva function determines the possible maximal and minimal flux ranges under the given model constraints:

[7]: solution = sd.fva(model)
print(solution)

minimum maximum
PFK 0.0 176.61
PFL 0.0 40.00
PGI -50.0 10.00
PGK -20.0 -0.00
PGL 0.0 60.00
...
NADH16 0.0 120.00
NADTRHD 0.0 378.22
NH4t 0.0 10.00
O2t 0.0 60.00
PDH 0.0 40.00

[95 rows x 2 columns]

The parameters ‘solver’ and ‘constraints’ can also be used in the FVA function call. As an example, we determine the
flux ranges for the case that the flux sum of PDH and PFL is smaller than 8.

[8]: solution = sd.fva(model, constraints='PDH + PFL <= 8')
print(solution)

minimum maximum
PFK 0.0 147.610000
PFL 0.0 8.000000
PGI -50.0 10.000000
PGK -20.0 -0.000000
PGL 0.0 60.000000
...
NADH16 0.0 120.000000
NADTRHD 0.0 375.220000
NH4t 0.0 8.300263

(continues on next page)

14 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

O2t 0.0 60.000000
PDH 0.0 8.000000

[95 rows x 2 columns]

4.2.3 Yield optimization

Yield optmization aims to maximize a given flux expression (e.g., a product’s synthesis rate) divided by another such
expression (e.g., a substrate’s uptake rate).

Warning:
Yield optimization and Flux Balance Analysis are two different methods that produce distinct optimal values and
also distinct optimal flux vectors.

Consider the following example of maximizing growth and biomass yield under limited oxygen uptake.

[9]: numerator = 'BIOMASS_Ecoli_core_w_GAM'
denominator = '-EX_glc__D_e'
constraint = '-EX_o2_e <= 3'

sol_fba = sd.fba(model,obj='BIOMASS_Ecoli_core_w_GAM',obj_sense='maximize',
→˓constraints=constraint)
fba_yield = sol_fba.fluxes[numerator] / -sol_fba.fluxes['EX_glc__D_e']

sol_yopt = sd.yopt(model,obj_num=numerator,obj_den=denominator,obj_sense='maximize',
→˓constraints=constraint)
yopt_yield = sol_yopt.objective_value

print(f"Maximum yield (FBA): {fba_yield}.")
print(f"Maximum yield (yOpt): {yopt_yield}.")

Maximum yield (FBA): 0.031965425062067315.
Maximum yield (yOpt): 0.03629426243040193.

The best biomass yield is achieved when only respiration is used. The best growth rates use respiration and additionally
overflow metabolism with poorer biomass yield.

The plotting chapter shows how relationships between yields and rates can be visualized.

4.2.3.1 Mathematical background

Constraint-based models (Sv = 0, lb ≤ v ≤ ub) can be rewritten in a single matrix-inequality term (Ax ≤ b).

With this notation, the yield optimization is a linear fractional program (LFP):

maximize cᵀx
dᵀx

subject to Ax ≤ b.

Under the condition that the denominator term is strictly positive (Ax ≤ b ⇒ dᵀx > 0), the LFP may be rewritten
as an LP problem, using the Charnes-Cooper transformation. The formerly fixed boundaries b of the problem are then

4.2. Network Analysis 15

StrainDesign, Release 1.11

scaled by the auxiliary variable 𝑒 while the variable 𝑦 = cᵀx
dᵀx expresses the original objective function:

maximize 𝑦

subject to

⎡⎣A −b 0
dᵀ 0 0
cᵀ 0 −1

⎤⎦⎡⎣x̃𝑒
𝑦

⎤⎦≤
=
=

⎡⎣01
0

⎤⎦
𝑒 ≥ 0.

Solutions of x to the LFP (first problem) can be retrieved from a solution of the LP through x = x̃
𝑒 .

4.3 Plotting the flux space

There are different ways to visualize the space of feasible steady-state flux vectors. The two most popular plot types
are production envelopes and yield spaces.

Note:
Production envelopes project the flux space of feasible steady-state flux vectors onto two dimensions whereas each
dimension is a flux rate. Yield spaces map feasible yield combinations onto two dimensions whereas each dimension
is a flux ratio.

StrainDesign provides functions for both of these plot types, but additionally support plotting of arbitrary other pro-
jections or mappings of rate and yield terms on two or three dimensions. Here, we use the e_coli_core example for
demonstration purposes again.

[1]: import cobra
import straindesign as sd
model = cobra.io.load_model('e_coli_core')

Set parameter Username
Academic license - for non-commercial use only - expires 2023-07-20

4.3.1 Production Envelopes

Production envelopes project the solution space of steady-state flux vectors onto the dimensions of growth rate and
product synthesis rate. Such a plot can be generated by:

[2]: sd.plot_flux_space(model,('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'));

16 Chapter 4. How to cite:

StrainDesign, Release 1.11

Again, arbitrary constraints can be applied to the flux space to plot subspaces. Here, we plot the flux space within a
small range of oxygen uptakes (1-2𝑚𝑚𝑜𝑙02𝑔

−1
𝐶𝐷𝑊ℎ−1). This constraint reduces the maximum growth rate to a thrid,

while maximum growth entails ethanol production.

[3]: sd.plot_flux_space(model,('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'),
constraints=['-EX_o2_e >= 1', '-EX_o2_e <= 2']);

It is also possible to use arbitrary linear expressions for the axis. Here, for instance, we plot the carbon recovery in
the oxidized products formate, acetate and CO2 versus the reduced product ethanol. The coefficients for each product
are matched with their number of carbon atoms. Glucose uptake is set to 1 (so the input equals 6 carbon atoms). The
plot now shows that, stoichiometrically, at most of 4 out of 6 atoms can be directed to either side, ethanol or oxidized
products. Yet, to balance redox equivalents, it is necessary, to then direct the remaining 2 carbon atoms towars the
other side.

[4]: constraints=[
'EX_h_e >= 0',
'EX_co2_e >= 0',
'EX_o2_e = 0'

(continues on next page)

4.3. Plotting the flux space 17

StrainDesign, Release 1.11

(continued from previous page)

]
model1 = model.copy()
model1.reactions.ATPM.lower_bound = 0
model1.reactions.EX_glc__D_e.lower_bound = -1
model1.reactions.EX_glc__D_e.upper_bound = -1
datapoints, triang, plot1 = sd.plot_flux_space(model1,('2 EX_ac_e + 1 EX_for_e + 1 EX_
→˓co2_e','2 EX_etoh_e'),

constraints = constraints);

Read LP format model from file C:\Users\Philipp\AppData\Local\Temp\tmpmxmathi0.lp
Reading time = 0.00 seconds
: 72 rows, 190 columns, 720 nonzeros

Notice the bump in the top edge? We may use a finer sampling grid to even out such artifacts.

[5]: datapoints, triang, plot1 = sd.plot_flux_space(model1,('2 EX_ac_e + 1 EX_for_e + 1 EX_
→˓co2_e','2 EX_etoh_e'),

constraints = constraints, points=55);

18 Chapter 4. How to cite:

StrainDesign, Release 1.11

4.3.2 Yield Spaces

The yield space plot can be used to depict the relationship between two yield terms in a metabolic networks. Here, we
plot the biomass yield vs the etahnol production yield.

[6]: sd.plot_flux_space(model,(('BIOMASS_Ecoli_core_w_GAM','-EX_glc__D_e'),('EX_etoh_e','-EX_
→˓glc__D_e')));

Yield space plots often look similar to their corresponding phase planes, as it is the case here.

Warning:
It should be noted that yield terms are generally non-linear and, adversely to pure flux-space projections, yield
spaces may therfore be non-polyhedral or even non-convex.

4.3.3 Mixed Plots

The following plot uses a rate and a yield for the different axes. It shows the relationship between possible growth rates
and biomass yields under limited oxygen uptake.

[7]: sd.plot_flux_space(model,('BIOMASS_Ecoli_core_w_GAM',('BIOMASS_Ecoli_core_w_GAM','-EX_
→˓glc__D_e')),

constraints='-EX_o2_e <= 6');

4.3. Plotting the flux space 19

StrainDesign, Release 1.11

The graph shows that under limited oxygen uptake, maximum growth rate and maximum biomass yield do not coincide.
As discussed in the chapter of yield optimization, overflow metabolism may be used to boost growth at the expense of
biomass yield.

Note:
If growth yield and growth rate could be used interchangably, we would observe a straingt diagonal line here.

In the case of unlimited oxygen uptake, we observe that best yield and growth rate indeed coinside, since respiration
can be fully exploited to attain the hightest possible biomass yield:

[8]: sd.plot_flux_space(model,('BIOMASS_Ecoli_core_w_GAM',('BIOMASS_Ecoli_core_w_GAM','-EX_
→˓glc__D_e')));

We may also use a mixed rate-yield (oxygen uptake vs biomass yield) plot to graphically determine the oxygen uptake

20 Chapter 4. How to cite:

StrainDesign, Release 1.11

rate needed to attain the maximum yield. There is a sigmoidal increase of the biomass yield with increased oxygen
availability:

[9]: sd.plot_flux_space(model,('-EX_o2_e',('BIOMASS_Ecoli_core_w_GAM','-EX_glc__D_e')));

4.3.4 3D plots

A 3-dimensional plot may help tp reveal more complex relationships between fluxes and yields. In the following plot,
we analyze the relationship between oxygen uptake, growth rate and ethanol yield.

[10]: sd.plot_flux_space(model,('-EX_o2_e','BIOMASS_Ecoli_core_w_GAM',('EX_etoh_e','-EX_glc__D_
→˓e')),

constraints='-EX_o2_e <= 10',points=10);

Since a 3D-plot does not show us the angle we are looking for, we may halt plotting and use matplotlib commands to
rotate the plot before the actual plotting.

[11]: %matplotlib inline
import matplotlib.pyplot as plt

(continues on next page)

4.3. Plotting the flux space 21

StrainDesign, Release 1.11

(continued from previous page)

,,plot1 = sd.plot_flux_space(model,('-EX_o2_e','BIOMASS_Ecoli_core_w_GAM',('EX_etoh_e',
→˓'-EX_glc__D_e')),

constraints='-EX_o2_e <= 10',points=10,show=False);
plot1._axes.view_init(20, 135)
plt.show()

The plot now shows that at low or no oxygen uptake, a minimum ethanol yield is guaranteed at maximum growth rates,
while at higher growh rates this is not the case. The critical point seems to be reached at an oxygen uptake rate of about
7𝑚𝑚𝑜𝑙02𝑔

−1
𝐶𝐷𝑊ℎ−1.

4.3.4.1 Interactive and animated 3D plots

You may set a custom rendering option, to generate an interactive that can be rotated or a plot in a separate window.
This can be done either through the IPython magic command, e.g., %matplotlib tk:

[12]: %matplotlib tk
sd.plot_flux_space(model,('-EX_o2_e','BIOMASS_Ecoli_core_w_GAM',('EX_etoh_e','-EX_glc__D_
→˓e')),

constraints='-EX_o2_e <= 10',points=10);

or by passing the parameter plt_backend:

[13]: sd.plot_flux_space(model,('-EX_o2_e','BIOMASS_Ecoli_core_w_GAM',('EX_etoh_e','-EX_glc__D_
→˓e')),

constraints='-EX_o2_e <= 10',points=10,
plt_backend='TkAgg');

You may also animate 3D figures and save these animations to GIFs or movie files. Please note, that the ffmpeg codec
needs to be installed and available. For that matter, refer to the matplotlib reference.

[14]: import matplotlib.animation as animation
from IPython import display

r1 = ('-EX_o2_e')
r2 = ('BIOMASS_Ecoli_core_w_GAM')

(continues on next page)

22 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

y3 = ('EX_etoh_e', '-EX_glc__D_e')
constraints = ['NADTRHD = 0',

'NADH16 = 0',
'LDH_D = 0',
'PPC = 0']

,,plot2 = sd.plot_flux_space(model, (r1, r2, y3),
constraints=constraints,
points=10,
show=False)

specify animation
def animate(angle):

plot2._axes.view_init(20, angle)
return plot2

generate animation
ani = animation.FuncAnimation(

plot2.figure, animate, save_count=360)

Save the animation in gif
writer = animation.FFMpegWriter(

fps=25, bitrate=1000)
ani.save("movie.gif", writer=writer)

Alternatively, display animation in Jupyter notebook
video = ani.to_html5_video()
html = display.HTML(video)
display.display(html)

<IPython.core.display.HTML object>

Plot generation:
For all plots, the term from the primary axis is minimized and maximized. The points parameter is used to generate
a grid that is used in the maximizations and minimizations in the direction of the secondary axis. In case of a 3D plot,
another grid is then generated on the first two axes and maximizations and minimizations are performed in the direction
of the tertiary axis.

In 2D, the resulting polygon is then filled. In 3D, Delaunay triangles are generated to plot the surface of the shape.

4.4 Computational strain design: Growth-coupled production (GCP)

A main principle for the design of bioproduction hosts is the coupling of product synthesis to microbial growth, such
that the product of interest becomes a byproduct of growth. Different notions of growth-coupling principle prevail in
literature. With gradually increasing coupling strength, we can distinguish four different classes: - potentially growth-
coupled production (pGCP): product synthesis is possible at maximum growth (e.g., minimum demand in OptKnock
computations) - weakly growth-coupled production (wGCP): product synthesis is enforced at maximum growth (e.g.,
demanded by RobustKnock or OptCouple) - directionally growth-coupled production (dGCP): product synthesis is
enforced at all growth rates greater than zero (e.g., often demanded by MCS, often generated by OptCouple) - substrate-
uptake-coupled production (SUCP): product is synthesized whenever substrate is taken up, i.e., a minimum product
yield is guaranteed (e.g., often demanded by MCS)

4.4. Computational strain design: Growth-coupled production (GCP) 23

StrainDesign, Release 1.11

Before moving on the computation of strain designs, we will provide strain design examples for the different coupling
types and show their main property. To keep it as simple as possible, we will use ethanol as the desired product, use
the small “textbook model” e_coli_core, and introduce only reaction knockouts (and no knock-ins).

[1]: import cobra
import straindesign as sd
model = cobra.io.load_model('e_coli_core')

Set parameter Username
Academic license - for non-commercial use only - expires 2023-07-20

4.4.1 pGCP: potentially growth-coupled production

When we knock out the reactions PPS, THD2, TKT2 and MDH in e_coli_core, we obtain a potentially coupled strain
design. Below, we plot the flux space of the wild type model (blue/background) on the dimensions of growth rate
and the ethanol yield and compare it to the pGCP strain design (orange/foreground). In the wild type model, growth
and ethanol production compete, whereas, in the strain designed for pGCP, product synthesis is also possible (yet not
required) at growth-maximal flux states.

[2]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(model,

('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'),
show=False);

pGCP design plot
constraints = ['PPS=0', 'THD2=0', 'TKT2=0', 'MDH=0']
_, _, plot2 = sd.plot_flux_space(model,

('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'),
constraints=constraints,
show=False);

adjust axes limits and show plot
plot2.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot2.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

24 Chapter 4. How to cite:

StrainDesign, Release 1.11

4.4.2 wGCP: weakly growth-coupled production

A weakly growth-coupled production strain design can be generated by knocking out the reactions ACALDt, PTAr,
PPS, PYRt2 and MDH in e_coli_core. Below, we plot the flux space of the wild type model (blue/background) on the
dimensions of growth rate and the ethanol yield and compare it to the wGCP strain design (orange/foreground). In the
wild type model, growth and ethanol production compete, whereas, in the strain designed for wGCP, growth-maximal
flux states can only be reached by simultanously producing ethanol.

[3]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(model,

('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'),
show=False);

pGCP design plot
constraints = ['ACALDt=0', 'PTAr=0', 'PPS=0', 'PYRt2=0', 'MDH=0']
_, _, plot2 = sd.plot_flux_space(model,

('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'),
constraints=constraints,
show=False);

adjust axes limits and show plot
plot2.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot2.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

4.4.3 dGCP: directionally growth-coupled production

By knocking out the reactions PGL, ATPS4r and NADH16 in e_coli_core, we obtain a directionally coupled strain
design. Below, we plot the flux space of the the dGCP strain design (orange/foreground) on the dimensions of growth
rate and the ethanol production. In the strain designed for dGCP, product synthesis is occurs at all growth-associated
flux states. In this example significantly higher specific production rates are reached than in the pGCP and wGCP
scenario, however at the detriment of high growth rates.

[4]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(model,

(continues on next page)

4.4. Computational strain design: Growth-coupled production (GCP) 25

StrainDesign, Release 1.11

(continued from previous page)

('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'),
show=False);

pGCP design plot
constraints = ['PGL=0', 'ATPS4r=0', 'NADH16=0']
_, _, plot2 = sd.plot_flux_space(model,

('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e'),
constraints=constraints,
show=False);

adjust axes limits and show plot
plot2.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot2.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

4.4.4 SUCP: substrate-uptake-coupled production

In strain designs with substrate-uptake-coupled production, all feasible flux states of substrate uptake also entail pro-
duction. To obtain a such a strain design for the production of ethanol, the reactions knockouts LDH_D, ATPS4r and
NADH16 can be introduced to e_coli_core. Other than in the previous examples, we here plot the flux space of the
SUCP strain design (orange/foreground) on the dimensions of growth rate and ethanol yield. In the SUCP strain design,
a minimum product yield is ensured in all remaining feasible flux states. Again, the improved production capacities
often come at the expense of viability.

[5]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(model,

('BIOMASS_Ecoli_core_w_GAM',('EX_etoh_e',
→˓'-EX_glc__D_e')),

show=False);
pGCP design plot
constraints = ['LDH_D=0', 'ATPS4r=0', 'NADH16=0']
_, _, plot2 = sd.plot_flux_space(model,

('BIOMASS_Ecoli_core_w_GAM',('EX_etoh_e',
→˓'-EX_glc__D_e')),

constraints=constraints,
(continues on next page)

26 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

show=False);
adjust axes limits and show plot
plot2.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot2.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

In the following chapter, we discuss how different algorithms can be used to generate growth-coupled strain designs.

4.5 Minimal Cut Sets (MCS)

The minimal cut set approach aims to find a minimum set of network intervetions that enforce some pre-definde behavior
in a metabolic network. It may be used to suppress growth, suppress or enforce the synthesis of a certain product or
to couple or decouple metabolic fluxes. For a better conceptional understanding of the MCS approach, please refer
to examples 7 and 8. Examples 1-5 treat strain design applications in a small network, while example 6 presents a
genome-scale strain design computation.

4.5.1 Prerequisites

For the shown examples, we again load the COBRApy and the StrainDesign packages as well as the small E. coli
textbook-network “e_coli_core” and the example network “SmallExample”. For CNApy users a special project
(e_coli_core_14bdo) is available that contains the modified metabolic network together with strain design files for
the various examples which can be loaded from the strain design dialog.

The following steps show how the function compute_strain_designs is employed to find MCS strain designs: 1) The
production pathways, i.e., their metabolites and reactions are added to the model. 2) Analysis tools are used to identify
adequate strain design goals. 3) Set up the according strain design problem by specifying two strain design modules 4)
The strain design function is called, passing the model and the strain design module(s) as function arguments. 5) The
results are analyzed.

Step (1) is required for all examples shown hereafter. Steps (2)-(4) are example-dependent. We do step (5) for all
examples to verify the computed strain designs.

4.5. Minimal Cut Sets (MCS) 27

StrainDesign, Release 1.11

4.5.1.1 1) Add and verify production pathway

[1]: import straindesign as sd
import cobra
cobra.Configuration().solver = 'cplex'

ecc = cobra.io.load_model('e_coli_core')
model = cobra.io.read_sbml_model('../../../tests/model_small_example.xml')

Create copy of model to which pathway will be added
ecc_14bdo = ecc.copy()

Add metabolites to model
ecc_14bdo.add_metabolites([cobra.Metabolite('sucsal_c'),# Succinic semialdehyde

cobra.Metabolite('4hb_c'), # 4-Hydroxybutanoate
cobra.Metabolite('4hbcoa_c'),# 4-Hydroxybutyryl-CoA
cobra.Metabolite('4hbal_c'), # 4-Hydroxybutanal
cobra.Metabolite('14bdo_c'), # Butane-1,4-diol (cytopl.)
cobra.Metabolite('14bdo_p'), # Butane-1,4-diol (peripl.)
cobra.Metabolite('14bdo_e') # Butane-1,4-diol (extrac.)
])

Create reactions
SSCOARx = cobra.Reaction('SSCOARx')
AKGDC = cobra.Reaction('AKGDC')
HBD = cobra.Reaction('4HBD')
HBCT = cobra.Reaction('4HBCT')
HBDH = cobra.Reaction('4HBDH')
HBDx = cobra.Reaction('4HBDx')
BDOtpp = cobra.Reaction('14BDOtpp')
BDOtex = cobra.Reaction('14BDOtex')
EX_14bdo_e = cobra.Reaction('EX_14bdo_e')

Add reactions to model
ecc_14bdo.add_reactions([SSCOARx,

AKGDC,
HBD,
HBCT,
HBDH,
HBDx,
BDOtpp,
BDOtex,
EX_14bdo_e])

Define reaction equations
SSCOARx.reaction = '1 h_c + 1 nadph_c + 1 succoa_c -> 1 coa_c + 1 nadp_c + 1 sucsal_c'
AKGDC.reaction = '1 akg_c + 1 h_c -> 1 co2_c + 1 sucsal_c'
HBD.reaction = '1 h_c + 1 nadh_c + 1 sucsal_c -> 1 4hb_c + 1 nad_c'
HBCT.reaction = '1 4hb_c + 1 accoa_c -> 1 4hbcoa_c + 1 ac_c'
HBDH.reaction = '1 4hbcoa_c + 1 h_c + 1 nadh_c -> 1 4hbal_c + 1 coa_c + 1 nad_c'
HBDx.reaction = '1 4hbal_c + 1 h_c + 1 nadh_c -> 1 14bdo_c + 1 nad_c'
BDOtpp.reaction = '1 14bdo_c -> 1 14bdo_p'
BDOtex.reaction = '1 14bdo_p -> 1 14bdo_e'

(continues on next page)

28 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

EX_14bdo_e.reaction = '1 14bdo_e ->'

Verify that pathway is operational
sol = sd.fba(ecc_14bdo,obj='EX_14bdo_e',obj_sense='max')
print(f"Maximum possible 1,4-BDO synthesis rate: {sol.objective_value}.")

Maximum possible 1,4-BDO synthesis rate: 10.252923076923619.

4.5.2 Example 1: Strain designs with a minimum product (1,4-butanediol) yield
(SUCP strain design)

We may use the MCS approach to generate strain designs with a guaranteed minimum yield of 1,4-butanediol (1,4-
BDO) on glucose, i.e. substrate-uptake-coupled production (SUCP).

We may plot the relationship between growth and product yield to get a feel for the production potential.

[2]: sd.plot_flux_space(ecc_14bdo, ('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e','-EX_glc__D_e
→˓')));

Bacterial growth seems to compete with 1,4-BDO production. The maximum theoretical 1,4-BDO yield, is slightly
above 1. We may now try to set realistic strain design goals. Assuming that knockout sets can be found the force
a product yield above 0.3, while a growth rate of 0.2 is still attainable, we can specify according flux subspaces for
protection or deletion through inequalities.

Since we decided to enforce a yield above 0.3, we aim to suppress all flux states with a yied inferior to this. Hence, we
can describe the subspace of undesired fluxes with the inequality:

𝑣1,4−𝐵𝐷𝑂

𝑣𝐺𝑙𝑐,𝑢𝑝
≤ 0.3

which can be linearized unter the assumption that 𝑣𝐺𝑙𝑐𝑢𝑝 > 0 to:

𝑣1,4−𝐵𝐷𝑂 − 0.3 𝑣𝐺𝑙𝑐,𝑢𝑝 ≤ 0

The flux states, which we aim to protect (at least partically) can be described by:

𝑣𝑔𝑟𝑜𝑤𝑡ℎ ≥ 0.2

4.5. Minimal Cut Sets (MCS) 29

StrainDesign, Release 1.11

We can use the plotting function to visualize the flux subspaces that we would like to suppress (orange) or protect
(green).

[3]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

show=False);
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

constraints='BIOMASS_Ecoli_core_w_GAM>=0.2
→˓',

show=False);
plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
pGCP design plot
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints='EX_14bdo_e + 0.3 EX_glc__D_e
→˓<= 0',

show=False);
plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')
adjust axes limits and show plot
plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

The StrainDesign package uses so-called “strain design modules” to specify strain design goals. In the case of MCS,
the goal is to suppress and protect flux spaces denoted by (sets of) linear inequalities. In the following we specify these

30 Chapter 4. How to cite:

StrainDesign, Release 1.11

modules.

[4]: module_suppress = sd.SDModule(ecc_14bdo,sd.names.SUPPRESS,constraints='EX_14bdo_e + 0.3␣
→˓EX_glc__D_e <= 0')
module_protect = sd.SDModule(ecc_14bdo,sd.names.PROTECT, constraints='BIOMASS_Ecoli_
→˓core_w_GAM>=0.2')

It must be noted that suppressed or protected flux spaces are not only denoted by single inequalities, but are always
subspaces of the original model. For instance, the set of flux vectors in the “suppressed” flux space is constrained by
the specified inequality

𝑣𝑠𝑢𝑝𝑝1,4−𝐵𝐷𝑂 − 0.3 𝑣𝑠𝑢𝑝𝑝𝐺𝑙𝑐,𝑢𝑝 ≤ 0

but also by the model constraints

S · vsupp = 0

lb ≤ vsupp ≤ ub

We must pay close attention when specifying protect and suppress’ modules, as, in either case, we avoid to include the
zero flux vector :math:`mathbf{v = 0}` in the according subspace. If the zero vector were contained in thesuppressed*
flux space, the subspace could not be suppressed, since the zero vector can always be attained, even if all reactions
were to be blocked. If the zero vector is part of the protected flux space, the module will be ineffective, since reactions
knockouts can never disrupt this vector.

In the case of the e_coli_core, it is unnecessary to exclude the zero vector explicitly, since it is already excluded by
default due to the minimum ATP maintenance demand. If this was not the case, one would need a auxiliary constraint,
e.g., $ v_{Glc,up} :nbsphinx-math:`ge `0.1$.

We can now proceed with the strain design computation. Since we normally don’t know if solutions to our strain design
problems exist, we will start the computation with the most relaxed settings possible. This means, we compute only one
single solution, within a given MILP timelimit of 5 minutes (for genome-scale setups, this should be increased to an
hour), while omitting the minimality demand in the solutions and allow up to 30 knockouts. For this initial approach,
we also activate logging to follow the progress of the computation.

[5]: import logging
logging.basicConfig(level=logging.INFO)
Compute strain designs
sols = sd.compute_strain_designs(ecc_14bdo,

sd_modules = [module_suppress, module_protect],
time_limit = 300,
max_solutions = 1,
max_cost = 10,
solution_approach = sd.names.ANY)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.reaction_sd)} solutions in the uncompressed netork.")
print(f"Example knockout set: {[s for s in sols.reaction_sd[0]]}")

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Compressing Network (104 reactions).
INFO:root: Removing blocked reactions.

(continues on next page)

4.5. Minimal Cut Sets (MCS) 31

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 61 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (61 reactions).
INFO:root: Network compression completed. (1 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 61 reactions, 36 metabolites
INFO:root: 50 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding (also non-optimal) strain designs ...
INFO:root:Searching in full search space.
INFO:root:Minimizing number of interventions in subspace with 10 possible targets.
INFO:root:Strain design with cost 8.0: {'PGI': -1, 'ACALD': -1, 'ACKr*PTAr': -1,
→˓'PPS*ADK1': -1, 'PYRt2*EX_pyr_e': -1, 'D_LACt2*EX_lac__D_e*LDH_D': -1, 'SUCOAS': -1,
→˓'ICL*MALS': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root:48 solutions found.

One compressed solution with cost 8.0 found and expanded to 48 solutions in the␣
→˓uncompressed netork.
Example knockout set: ['PGI', 'ACALD', 'SUCOAS', 'ACKr', 'PPS', 'PYRt2', 'D_LACt2', 'ICL
→˓']

We may plot the computed strain design (yellow) on top of the wild type model (blue), the suppressed fluxes (orange)
and the protected fluxes (green). The designed strain is forced to produce 1,4-butanediol but is still able to grow at a
rate higher than 0.2 1/h.

[6]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

show=False);
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

constraints='BIOMASS_Ecoli_core_w_GAM>=0.2
→˓',

show=False);
plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
pGCP design plot
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

(continues on next page)

32 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints='EX_14bdo_e + 0.3 EX_glc__D_e
→˓<= 0',

show=False);
plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')
plotting designed strain
knockouts = [[{s:1.0},'=',0.0] for s in sols.reaction_sd[0]]
_, _, plot4 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints=knockouts,
show=False);

plot4.set_facecolor('#FFC000')
plot4.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot4.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot4.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

An easy way to compute gene-based MCS is to set the gene_kos parameter to True. All genes then are regarded as
knockout candidates.

[7]: import logging
logging.basicConfig(level=logging.INFO)
Compute strain designs
sols = sd.compute_strain_designs(ecc_14bdo,

sd_modules = [module_suppress, module_protect],
(continues on next page)

4.5. Minimal Cut Sets (MCS) 33

StrainDesign, Release 1.11

(continued from previous page)

time_limit = 300,
max_solutions = 1,
max_cost = 30,
solution_approach = sd.names.ANY,
gene_kos = True)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example knockout set: {[s for s in sols.gene_sd[0]]}")

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 113 genes and 56 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (307 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 164 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 142 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 135 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 134 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 133 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (133 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 133 reactions, 78 metabolites
INFO:root: 47 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding (also non-optimal) strain designs ...
INFO:root:Searching in full search space.
INFO:root:Minimizing number of interventions in subspace with 11 possible targets.
INFO:root:Strain design with cost 12.0: {'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_b1676_
→˓or_g_b1854': -1, 'ME1*maeA': -1, 'ME2*maeB': -1, 'PDH*aceE*aceF*R_g_b0114_and_g_b0115_
→˓and_g_b0116': -1, 'pgi': -1, 'kgtP': -1, 'sucC*sucD*R_g_b0728_and_g_b0729': -1,
→˓'fumC*R0_g_b1611_or_g_b1612_or_g_b4122*fumA*R1_g_b1611_or_g_b1612_or_g_b4122*fumB*R2_g_
→˓b1611_or_g_b1612_or_g_b4122': -1, 'gltP': -1}
INFO:root:Finished solving strain design MILP.

(continues on next page)

34 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:4 solutions found.

One compressed solution with cost 12.0 found and expanded to 4 solutions in the␣
→˓uncompressed netork.
Example knockout set: ['pgi', 'kgtP', 'gltP', 'maeA', 'maeB', 'aceE', 'pykF', 'pykA',
→˓'sucC', 'fumC', 'fumA', 'fumB']

We may now analyze the resulting strain designs stored in sols.gene_sd. When strain designs were computed with
genetic interventions, such interventions need to be translated back to the reaction level in order to enable network
analysis tools. This is done automatically at the end of each computation. The reaction-intervention equivalent can be
accessed through the field sols.reaction_sd.

[8]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

show=False);
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

constraints='BIOMASS_Ecoli_core_w_GAM>=0.2
→˓',

show=False);
plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
pGCP design plot
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints='EX_14bdo_e + 0.3 EX_glc__D_e
→˓<= 0',

show=False);
plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')
plotting designed strain
knockouts = [[{s:1.0},'=',0.0] for s in sols.reaction_sd[0]]
_, _, plot4 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints=knockouts,
show=False);

(continues on next page)

4.5. Minimal Cut Sets (MCS) 35

StrainDesign, Release 1.11

(continued from previous page)

plot4.set_facecolor('#FFC000')
plot4.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot4.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot4.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

As before, the designed strain complies with the specified MCS strain design goals.

In step (1), we added two pathways that can be used to produce the intermediate succinic semialdehyde branching from
alpha-ketoglutarate. In fact, only one reaction, AKGDC or SSCOARx, is needed for producing 1,4-BDO. If we want
to save experimental effort, we may want to consider the addition of only one of the two respective enzymes.

For the MCS computation, we will therefore mark the reactions AKGDC and SSCOARx as “addition candidates”. The
algorithm will now combine a knockout strategy with the addition of one of the two reactions. For this computation
example we will: - relax the strain design demands. - allow the knockout of all genes (apart from the pseudogene
for spontanous reactions) - allow the knockout of O2, thereby simulating anaerobic conditions - allow the limitation
of O2 uptake down to a rate of below 1 - treat AKGDC and SSCOARx as addition candidates (Instead of reaction
additions, one could also use gene-additions. Since the gene-reaction-association is 1:1, the computation results would
be identical.). We associate different intervention costs to the addition of these reactions. AKGDC addition has the
cost 1, SSCOARx addition has the cost 5.

[9]: module_suppress = sd.SDModule(ecc_14bdo,sd.names.SUPPRESS,constraints='EX_14bdo_e + 0.05␣
→˓EX_glc__D_e <= 0')
module_protect = sd.SDModule(ecc_14bdo,sd.names.PROTECT, constraints='BIOMASS_Ecoli_
→˓core_w_GAM>=0.02')

allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
possible throttling of O2 uptake
reg_cost = {'-EX_o2_e <= 1' : 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':5}

(continues on next page)

36 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

compute strain designs
import logging
logging.basicConfig(level=logging.INFO)
sols = sd.compute_strain_designs(ecc_14bdo,

sd_modules = [module_suppress, module_protect],
max_cost = 9,
solution_approach = sd.names.POPULATE,
ko_cost = ko_cost,
gko_cost = gko_cost,
reg_cost = reg_cost,
ki_cost = ki_cost)

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 111 genes and 52 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (301 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 155 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 133 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 126 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 125 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 124 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (124 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 124 reactions, 73 metabolites
INFO:root: 48 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Enumerating strain designs ...
INFO:root:Strain designs with cost 7.0: [{'CYTBD*EX_o2_e*O2t*cydA*cydB*R_g_b0733_and_g_
→˓b0734*R0_g_b0733_and_g_b0734_or_g_b0978_and_g_b0979*cbdA*cbdB*R_g_b0978_and_g_b0979*R1_
→˓g_b0733_and_g_b0734_or_g_b0978_and_g_b0979': -1.0, 'SSCOARx': 1.0, 'pgi': -1.0}]
INFO:root:Strain designs with cost 9.0: [{'SSCOARx': 1.0, 'pgi': -1.0, 'focA*R0_g_b0904_
→˓or_g_b2492*focB*R1_g_b0904_or_g_b2492': -1.0, 'n-1.0_EX_o2_e_le_1p0': -1.0}]

(continues on next page)

4.5. Minimal Cut Sets (MCS) 37

StrainDesign, Release 1.11

(continued from previous page)

INFO:root:Strain designs with cost 9.0: [{'PFL*EX_for_e*pflA*pflB*R_g_b0902_and_g_
→˓b0903*R0_g_b0902_and_g_b0903_or_g_b0902_and_g_b3114_or_g_b3951_and_g_b3952*tdcE*R_g_
→˓b0902_and_g_b3114*R1_g_b0902_and_g_b0903_or_g_b0902_and_g_b3114_or_g_b3951_and_g_
→˓b3952...': -1.0, 'SSCOARx': 1.0, 'pgi': -1.0, 'n-1.0_EX_o2_e_le_1p0': -1.0}]
INFO:root:Strain designs with cost 9.0: [{'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_
→˓b1676_or_g_b1854': -1.0, 'ICL*MALS*aceA*glcB*R0_g_b2976_or_g_b4014*aceB*R1_g_b2976_or_
→˓g_b4014': -1.0, 'AKGDC': 1.0, 'pgi': -1.0, 'kgtP': -1.0, 'lpd': -1.0, 'gltP': -1.0,
→˓'mdh': -1.0}]
INFO:root:Strain designs with cost 9.0: [{'AKGDH*sucA*sucB*R_g_b0116_and_g_b0726_and_g_
→˓b0727': -1.0, 'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_b1676_or_g_b1854': -1.0,
→˓'ICL*MALS*aceA*glcB*R0_g_b2976_or_g_b4014*aceB*R1_g_b2976_or_g_b4014': -1.0, 'AKGDC':␣
→˓1.0, 'pgi': -1.0, 'kgtP': -1.0, 'gltP': -1.0, 'mdh': -1.0}]
INFO:root:Strain designs with cost 9.0: [{'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_
→˓b1676_or_g_b1854': -1.0, 'ICL*MALS*aceA*glcB*R0_g_b2976_or_g_b4014*aceB*R1_g_b2976_or_
→˓g_b4014': -1.0, 'AKGDC': 1.0, 'pgi': -1.0, 'kgtP': -1.0, 'sucC*sucD*R_g_b0728_and_g_
→˓b0729': -1.0, 'gltP': -1.0, 'mdh': -1.0}]
INFO:root:Strain designs with cost 9.0: [{'SSCOARx': 1.0, 'pgi': -1.0, 'mhpF*R0_g_b0351_
→˓or_g_b1241': -1.0, 'adhE': -1.0, 'n-1.0_EX_o2_e_le_1p0': -1.0}]
INFO:root:Finished solving strain design MILP.
INFO:root:7 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:14 solutions found.

[10]: for i,s in enumerate(sols.gene_sd):
st = [['+'+t if v>0 else '-'+t][0] for t,v in s.items() if v != 0]
print('solution '+str(i+1)+': '+', '.join(st))

solution 1: +SSCOARx, -pgi, -EX_o2_e
solution 2: +SSCOARx, -pgi, -cydB, -cbdA
solution 3: +SSCOARx, -pgi, -cydB, -cbdB
solution 4: +AKGDC, -pgi, -kgtP, -gltP, -mdh, -aceA, -pykF, -pykA, -sucC
solution 5: +AKGDC, -pgi, -kgtP, -gltP, -mdh, -aceA, -pykF, -pykA, -sucD
solution 6: +SSCOARx, -pgi, -pflA, -pflD, +-EX_o2_e <= 1
solution 7: +SSCOARx, -pgi, -pflA, -pflC, +-EX_o2_e <= 1
solution 8: +AKGDC, -pgi, -kgtP, -gltP, -mdh, -sucA, -aceA, -pykF, -pykA
solution 9: +AKGDC, -pgi, -kgtP, -gltP, -mdh, -sucB, -aceA, -pykF, -pykA
solution 10: +SSCOARx, -pgi, -cydA, -cbdA
solution 11: +SSCOARx, -pgi, -cydA, -cbdB
solution 12: +SSCOARx, -pgi, -focA, -focB, +-EX_o2_e <= 1
solution 13: +SSCOARx, -pgi, -adhE, -mhpF, +-EX_o2_e <= 1
solution 14: +AKGDC, -pgi, -kgtP, -lpd, -gltP, -mdh, -aceA, -pykF, -pykA

38 Chapter 4. How to cite:

StrainDesign, Release 1.11

4.5.3 Example 2: Enforce product (1,4-BDO) synthesis at all growth states (dGCP
strain design)

For computing dGCP strain designs with MCS, we follow the identical steps from Example 1:

1) The production pathways, i.e., their metabolites and reactions are added to the model.

2) Analysis tools are used to identify adequate strain design goals.

3) Set up the according strain design problem by specifying two strain design modules, one that demand the suppres-
sion of flux states with low product yields, the other one protecting the functions that are essential for bacterial
growth.

4) The strain design function is called, passing the model and the strain design module(s) as function arguments.

5) The results are analyzed.

[11]: # Plot production envelope
sd.plot_flux_space(ecc_14bdo, ('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'));

For dGCP, we demand that all flux states of microbial growth carry production. Ideally, we want to (a) ensure a
minimum ratio of product synthesis rate and growth rate 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑣𝑔𝑟𝑜𝑤𝑡ℎ
> 𝑌 𝑚𝑖𝑛

𝑃/𝐵𝑀 (2) ensure that growth is still possible.
Hence, we define one suppression and one protection module.

Suppress module (removing flux states, where 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑣𝑔𝑟𝑜𝑤𝑡ℎ
≤ 𝑌 𝑚𝑖𝑛

𝑃/𝐵𝑀):

𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡 − 𝑌 𝑚𝑖𝑛
𝑃/𝐵𝑀𝑣𝑔𝑟𝑜𝑤𝑡ℎ ≤ 0

𝑣𝑔𝑟𝑜𝑤𝑡ℎ ≥ 0.01 ℎ−1

The latter constraint is used to explicitly exclude the v = 0 vector from the suppressed flux states. Here, we use an
arbitrary threshold of 𝑌 𝑚𝑖𝑛

𝑃/𝐵𝑀 = 5 that we inferred from the production envelope.

Protect module:

𝑣𝑔𝑟𝑜𝑤𝑡ℎ ≥ 0.2 ℎ−1

4.5. Minimal Cut Sets (MCS) 39

StrainDesign, Release 1.11

[12]: module_suppress = sd.SDModule(ecc_14bdo,sd.names.SUPPRESS,constraints=['EX_14bdo_e - 5␣
→˓BIOMASS_Ecoli_core_w_GAM <= 0',

'BIOMASS_Ecoli_
→˓core_w_GAM >= 0.01'])
module_protect = sd.SDModule(ecc_14bdo,sd.names.PROTECT, constraints='BIOMASS_Ecoli_
→˓core_w_GAM>=0.2')

Plotting the flux spaces in the production envelope returns:

[13]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
show=False);

_, _, plot2 = sd.plot_flux_space(ecc_14bdo,
('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
constraints='BIOMASS_Ecoli_core_w_GAM>=0.2

→˓',
show=False);

plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
pGCP design plot
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
The sign of the glucose exchange␣

→˓reaction is flipped since
reaction is defined in the direction of␣

→˓secretion.
constraints=['EX_14bdo_e - 5 BIOMASS_

→˓Ecoli_core_w_GAM <= 0',
'BIOMASS_Ecoli_core_w_GAM >=␣

→˓0.01'],
show=False);

plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')
adjust axes limits and show plot
plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

40 Chapter 4. How to cite:

StrainDesign, Release 1.11

[14]: import logging
logging.basicConfig(level=logging.ERROR)
allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

compute strain designs
sols = sd.compute_strain_designs(ecc_14bdo,

sd_modules = [module_suppress, module_protect],
max_solutions = 1,
max_cost = 30,
solution_approach = sd.names.BEST,
ko_cost = ko_cost,
gko_cost = gko_cost,
ki_cost = ki_cost)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.reaction_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")
print(f"Knockout set on the reaction level: {[s for s in sols.reaction_sd[0]]}")

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 111 genes and 52 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (299 reactions).
INFO:root: Removing blocked reactions.

(continues on next page)

4.5. Minimal Cut Sets (MCS) 41

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 153 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 131 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 124 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 123 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 122 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (122 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 122 reactions, 72 metabolites
INFO:root: 47 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Strain design with cost 6.0: {'ME2*maeB': -1, 'AKGDC': 1, 'kgtP': -1,
→˓'sucC*sucD*R_g_b0728_and_g_b0729': -1, 'pntB*pntA*R_g_b1602_and_g_b1603': -1, 'zwf': -
→˓1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:4 solutions found.

One compressed solution with cost 6.0 found and expanded to 4 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+AKGDC', '-kgtP', '-zwf', '-maeB', '-sucC', '-pntB']
Knockout set on the reaction level: ['SUCOAS', 'G6PDH2r', 'ME2', 'THD2', 'AKGt2r', 'AKGDC
→˓', 'SSCOARx']

[15]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
show=False);

_, _, plot2 = sd.plot_flux_space(ecc_14bdo,
('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
constraints='BIOMASS_Ecoli_core_w_GAM>=0.2

→˓',
show=False);

plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
pGCP design plot

(continues on next page)

42 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

_, _, plot3 = sd.plot_flux_space(ecc_14bdo,
('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
The sign of the glucose exchange␣

→˓reaction is flipped since
reaction is defined in the direction of␣

→˓secretion.
constraints=['EX_14bdo_e - 4 BIOMASS_

→˓Ecoli_core_w_GAM <= 0',
'BIOMASS_Ecoli_core_w_GAM >=␣

→˓0.01'],
show=False);

plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')
plotting designed strain
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot4 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
The sign of the glucose exchange␣

→˓reaction is flipped since
reaction is defined in the direction of␣

→˓secretion.
constraints=interventions,
show=False);

plot4.set_facecolor('#FFC000')
plot4.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot4.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot4.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

The resulting strain design shows a linear increase of ensured production with increasing growth.

4.5. Minimal Cut Sets (MCS) 43

StrainDesign, Release 1.11

4.5.4 Example 3: Suppress flux states that are optimal with respect to a pre-defined
objective function (wGCP strain design)

The MCS approach also allows the suppression (or protection) of flux vectors that are optimal regarding a pre-defined
objective function. With an inner objective function, the SUPPRESS module can be used to disrupt any growth-
maximal flux states that don’t carry production and thereby enforce - at least - weakly growth-coupled production.
To avoid lethal knockouts and ensure that growth is still possible at reasonable growth rates, we additionally use a
PROTECT region.

[16]: # Wild-type plot
print('Preparing plot of wild type and strain design setup.')
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

show=False);
wGCP protect plot
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

constraints='BIOMASS_Ecoli_core_w_GAM>=0.
→˓15',

show=False);
plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
wGCP suppress plot
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints='EX_14bdo_e + 0.25 EX_glc__D_
→˓e <= 0',

show=False);
plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')

print('Computing MCS.')
module_wgcp = sd.SDModule(ecc_14bdo,sd.names.SUPPRESS,

inner_objective='BIOMASS_Ecoli_core_w_GAM',
constraints='EX_14bdo_e + 0.25 EX_glc__D_e <= 0')

module_protect = sd.SDModule(ecc_14bdo,sd.names.PROTECT,
constraints='BIOMASS_Ecoli_core_w_GAM >= 0.15')

allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

(continues on next page)

44 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

sols = sd.compute_strain_designs(ecc_14bdo,
sd_modules = [module_wgcp,module_protect],
time_limit = 300,
max_solutions = 1,
max_cost = 30,
gko_cost = gko_cost,
ko_cost = ko_cost,
ki_cost = ki_cost,
solution_approach = sd.names.BEST)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

wGCP design plot
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot4 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints=interventions,
show=False);

plot4.set_facecolor('#FFC000')
plot4.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot4.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot4.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

Preparing plot of wild type and strain design setup.
Computing MCS.

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 111 genes and 52 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (299 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 153 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 131 reactions.

(continues on next page)

4.5. Minimal Cut Sets (MCS) 45

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 124 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 123 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 122 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (122 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 122 reactions, 72 metabolites
INFO:root: 47 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Strain design with cost 4.0: {'CYTBD*EX_o2_e*O2t*cydA*cydB*R_g_b0733_and_g_
→˓b0734*R0_g_b0733_and_g_b0734_or_g_b0978_and_g_b0979*cbdA*cbdB*R_g_b0978_and_g_b0979*R1_
→˓g_b0733_and_g_b0734_or_g_b0978_and_g_b0979': -1, 'SSCOARx': 1, 'mhpF*R0_g_b0351_or_g_
→˓b1241': -1, 'adhE': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:5 solutions found.

One compressed solution with cost 4.0 found and expanded to 5 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+SSCOARx', '-adhE', '-EX_o2_e', '-mhpF']

As specified by the additional inner objective function, product yields inferior to 0.25 (orange) are supressed at growth-
maximal flux states, only. At lower growth rates, the strain design is allowed to have lower product yields. The protected
region, marking healthy growth rates (green), has to be intersected.

46 Chapter 4. How to cite:

StrainDesign, Release 1.11

4.5.5 Example 4: Protect flux states that are optimal with respect to a pre-defined
objective function (pGCP strain design)

The following setup shows how this function can be used to generate strain designs with at least potentially growth-
coupled production. We specify a PROTECT module to ensure that there are growth-maximal flux states with a growth
rate of at least 0.4 and a product yield of at least 0.4

𝑚𝑜𝑙1,4-𝐵𝐷𝑂

𝑚𝑜𝑙𝐷-𝐺𝑙𝑢𝑐𝑜𝑠𝑒
.

[17]: # Wild-type plot
print('Preparing plot of wild type and strain design setup.')
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

show=False);
wGCP protect plot
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

constraints=['BIOMASS_Ecoli_core_w_GAM>=0.
→˓4','EX_14bdo_e + 0.4 EX_glc__D_e >= 0'],

show=False);
plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')

print('Computing MCS.')
module_pgcp = sd.SDModule(ecc_14bdo,sd.names.PROTECT,

inner_objective='BIOMASS_Ecoli_core_w_GAM',
constraints=['BIOMASS_Ecoli_core_w_GAM >= 0.4',

'EX_14bdo_e + 0.4 EX_glc__D_e >= 0'])

allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

sols = sd.compute_strain_designs(ecc_14bdo,
sd_modules = module_pgcp,
time_limit = 300,
max_solutions = 1,
max_cost = 30,
gko_cost = gko_cost,
ko_cost = ko_cost,
ki_cost = ki_cost,
solution_approach = sd.names.BEST)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

wGCP design plot
(continues on next page)

4.5. Minimal Cut Sets (MCS) 47

StrainDesign, Release 1.11

(continued from previous page)

interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot4 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM',('EX_14bdo_e',
→˓'-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints=interventions,
show=False);

plot4.set_facecolor('#FFC000')
plot4.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot4.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot4.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

Preparing plot of wild type and strain design setup.
Computing MCS.

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 86 genes and 49 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (267 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 149 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 128 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 122 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 121 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 120 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (120 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 120 reactions, 71 metabolites
INFO:root: 44 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.

(continues on next page)

48 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

INFO:root:Finding optimal strain designs ...
INFO:root:Strain design with cost 6.0: {'PGL*GND*pgl*gnd': -1, 'ME2*maeB': -1, 'AKGDC':␣
→˓1, 'adk': -1, 'pntB*pntA*R_g_b1602_and_g_b1603': -1, 'mdh': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:4 solutions found.

One compressed solution with cost 6.0 found and expanded to 4 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+AKGDC', '-adk', '-mdh', '-pgl', '-maeB', '-pntB']

The designed strain has potentially growth coupled production. It must be noted that only one PROTECT region (green)
was used in this computation. Without the inner objective function, the wild type strain already fulfills the modules
demands, because flux states with simultanous growth and production already exist in the wildtype. In this strain design
computation, we enforce that growth-maximal flux states exist with growth and product synthesis.

4.5.6 Example 5: All single gene knockouts that prohibit growth (synthetic lethals).

The MCS approach can be used to identify essential genes. For this type of computation we may use the MCS approach
with a single suppress-module that targets flux states of microbial growth, i.e. flux states in which the inequality

𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 > 0

approximated as

𝑣𝐵𝑖𝑜𝑚𝑎𝑠𝑠 ≥ 0.001

holds. We construct the corresponding module and launch an exhaustive computation of all solutions of the size 1.

[18]: # Construct module
module_suppress = sd.SDModule(ecc,sd.names.SUPPRESS, constraints='BIOMASS_Ecoli_core_w_
→˓GAM>=0.001')
Compute strain designs

(continues on next page)

4.5. Minimal Cut Sets (MCS) 49

StrainDesign, Release 1.11

(continued from previous page)

sols = sd.compute_strain_designs(ecc,
sd_modules = module_suppress,
max_cost = 1,
solution_approach = sd.names.POPULATE,
gene_kos = True)

Print solutions
print(f"{len(sols.gene_sd)} lethal single gene knockouts were found.")
for i,sol in enumerate(sols.gene_sd):

print(f"Solution {i+1}: {[s for s in sol][0]}")

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 135 genes and 69 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (348 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 198 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 169 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 160 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 158 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 156 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (156 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 156 reactions, 91 metabolites
INFO:root: 60 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Enumerating strain designs ...
INFO:root:Strain designs with cost 1.0: [{'eno': -1.0}]
INFO:root:Strain designs with cost 1.0: [{'gapA': -1.0}]
INFO:root:Strain designs with cost 1.0: [{'CS*gltA': -1.0}]
INFO:root:Strain designs with cost 1.0: [{'icd': -1.0}]
INFO:root:Strain designs with cost 1.0: [{'EX_glc__D_e*GLCpts*ptsH*ptsI*manX*manY*manZ*R_
→˓g_b1817_and_g_b1818_and_g_b1819_and_g_b2415_and_g_b2416...': -1.0}]
INFO:root:Strain designs with cost 1.0: [{'pgk': -1.0}]
INFO:root:Finished solving strain design MILP.

(continues on next page)

50 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

INFO:root:6 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:7 solutions found.

7 lethal single gene knockouts were found.
Solution 1: eno
Solution 2: gapA
Solution 3: icd
Solution 4: pgk
Solution 5: gltA
Solution 6: ptsH
Solution 7: ptsI

4.5.7 Example 6: Genome-scale strain designs with a minimum product (1,4-
butanediol) yield (SUCP strain design)

Supplementary preparation steps are necessary for computing strain designs in a genome-scale setup. Here, we again
use the example of enforcing substrat-uptake-coupled production of 1,4-butanediol. 1) Add production pathways, i.e.,
metabolites and reactions, to the model. 2) Ensure that only relevant exchange reactions are kept open in the model.
3) Analyze production capacities. 3) Set up the strain design problem through modules. 4) Launch the strain design
computation. 5) Analyze the results.

[19]: import straindesign as sd
import cobra

cobra.Configuration().solver = 'cplex'
iml = cobra.io.load_model('iML1515')

Create copy of model to which pathway will be added
iml_14bdo = iml.copy()
If available, set the solver to cplex or gurobi. This will increase the chances
of sucess enormously
iml_14bdo.solver = 'cplex'

Add metabolites to model
iml_14bdo.add_metabolites([cobra.Metabolite('4hb_c'), # 4-Hydroxybutanoate

cobra.Metabolite('4hbcoa_c'),# 4-Hydroxybutyryl-CoA
cobra.Metabolite('4hbal_c'), # 4-Hydroxybutanal
cobra.Metabolite('14bdo_c'), # Butane-1,4-diol (cytopl.)
cobra.Metabolite('14bdo_p'), # Butane-1,4-diol (peripl.)
cobra.Metabolite('14bdo_e') # Butane-1,4-diol (extrac.)
])

Create reactions
AKGDC = cobra.Reaction('AKGDC')
SSCOARx = cobra.Reaction('SSCOARx')
HBD = cobra.Reaction('4HBD')
HBCT = cobra.Reaction('4HBCT')
HBDH = cobra.Reaction('4HBDH')
HBDx = cobra.Reaction('4HBDx')

(continues on next page)

4.5. Minimal Cut Sets (MCS) 51

StrainDesign, Release 1.11

(continued from previous page)

BDOtpp = cobra.Reaction('14BDOtpp')
BDOtex = cobra.Reaction('14BDOtex')
EX_14bdo_e = cobra.Reaction('EX_14bdo_e')

Add reactions to model
iml_14bdo.add_reactions([SSCOARx,

AKGDC,
HBD,
HBCT,
HBDH,
HBDx,
BDOtpp,
BDOtex,
EX_14bdo_e])

Define reaction equations
SSCOARx.reaction = '1 h_c + 1 nadph_c + 1 succoa_c -> 1 coa_c + 1 nadp_c + 1 sucsal_c'
AKGDC.reaction = '1 akg_c + 1 h_c -> 1 co2_c + 1 sucsal_c'
HBD.reaction = '1 h_c + 1 nadh_c + 1 sucsal_c -> 1 4hb_c + 1 nad_c'
HBCT.reaction = '1 4hb_c + 1 accoa_c -> 1 4hbcoa_c + 1 ac_c'
HBDH.reaction = '1 4hbcoa_c + 1 h_c + 1 nadh_c -> 1 4hbal_c + 1 coa_c + 1 nad_c'
HBDx.reaction = '1 4hbal_c + 1 h_c + 1 nadh_c -> 1 14bdo_c + 1 nad_c'
BDOtpp.reaction = '1 14bdo_c -> 1 14bdo_p'
BDOtex.reaction = '1 14bdo_p -> 1 14bdo_e'
EX_14bdo_e.reaction = '1 14bdo_e ->'

define GPR rules for knock-inable genes
SSCOARx.gene_reaction_rule = 'gsscoar'
AKGDC.gene_reaction_rule = 'gakgdc'
iml_14bdo.genes.gsscoar.name = 'sscoar'
iml_14bdo.genes.gakgdc.name = 'akgdc'

Verify that pathway is operational
sol = sd.fba(iml_14bdo,obj='EX_14bdo_e',obj_sense='max')
print(f"Maximum possible 1,4-BDO synthesis rate: {sol.objective_value}.")

Maximum possible 1,4-BDO synthesis rate: 10.489195402311951.

The iML1515 model contains metabolite exchange capacities that are usually not observed in experiments such as
exchanges of CoA-associated or phosphorylated metabolites. While unrealistic, these exchanges are still represented
in the model and stoichiometrically possible, hence the MCS approach would have to target many of them in order to
enforce SUCP of 1,4-BDO. Closing unrealistic exchanges ahead of the computation reduces the computation effort and
aviods the excessive introduction of interventions.

We block the import of all carbon-containing metabolites apart from D-glucose.

We here opt to block the export of all metabolites apart from CO2, Ethanol, Acetate, Formate, D-Lactate, Succinate,
Methanol, O2, H+, H2, H2O2 and tungsten. We furthermore allow a number of exchange reactions with the prefix
DM_ that are required for the iML biomass synthesis pseudoreaction.

We replace long and complex GPR rules with shorter ones. The integrated compression routine would compresses
GPR rules, which would allow a fast computation. However decompression of computed strain designs can result in
countless equivalent strain designs. For instance, the simultanous knockouts of CYTBO3_4pp (cyoA & cyoB & cyoC
& cyoD) and FRD2 (frdA & frdB & frdC & frdD) can be achieved by any KO combination of the subunits and hence
by permutations (cyoA, frdA) or (cyoA, frdB) or (cyoB, frdA) and so on . . . This is an effect we try to minimize by

52 Chapter 4. How to cite:

StrainDesign, Release 1.11

substituting GPR rules.

[20]: exchange_reacs = [r for r in iml_14bdo.reactions if all(s<0 for s in r.metabolites.
→˓values())]
shut all exchange fluxes
for r in exchange_reacs:

r.upper_bound = 0.0

shut CO2 uptake
iml_14bdo.reactions.EX_co2_e.lower_bound = 0.0

keep main fermentation products open
iml_14bdo.reactions.EX_14bdo_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_ac_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_co2_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_etoh_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_for_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_h2_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_h2o2_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_h2o_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_h_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_lac__D_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_meoh_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_o2_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_succ_e.upper_bound = 1000.0
iml_14bdo.reactions.EX_tungs_e.upper_bound = 1000.0
iml_14bdo.reactions.DM_4crsol_c.upper_bound = 1000.0
iml_14bdo.reactions.DM_5drib_c.upper_bound = 1000.0
iml_14bdo.reactions.DM_aacald_c.upper_bound = 1000.0
iml_14bdo.reactions.DM_amob_c.upper_bound = 1000.0
iml_14bdo.reactions.DM_mththf_c.upper_bound = 1000.0
iml_14bdo.reactions.DM_oxam_c.upper_bound = 1000.0

substitute GPR rule in ATPS4rpp (all genes occur only in ATPS)
atps_genes = [g for g in iml_14bdo.reactions.ATPS4rpp.genes]
iml_14bdo.reactions.ATPS4rpp.gene_reaction_rule = str(atps_genes[0])
cobra.manipulation.remove_genes(iml_14bdo,atps_genes[1:])
atps_genes[0].name = 'atpX'

substitute GPR rules in NADH16pp, NADH17pp, NADH18pp (all genes occur only in NADHxxpp␣
→˓and GPR rules are identical)
nuo_genes = [g for g in iml_14bdo.reactions.NADH16pp.genes]
iml_14bdo.reactions.NADH16pp.gene_reaction_rule = str(nuo_genes[0])
iml_14bdo.reactions.NADH17pp.gene_reaction_rule = str(nuo_genes[0])
iml_14bdo.reactions.NADH18pp.gene_reaction_rule = str(nuo_genes[0])
cobra.manipulation.remove_genes(iml_14bdo,nuo_genes[1:])
nuo_genes[0].name = 'nuoX'

substitute GPR rules in FRD2, FRD3 (genes occur only in FRD2 and FRD3 and GPR rules␣
→˓are identical)
frd_genes = [g for g in iml_14bdo.reactions.FRD2.genes]
iml_14bdo.reactions.FRD2.gene_reaction_rule = str(frd_genes[0])
iml_14bdo.reactions.FRD3.gene_reaction_rule = str(frd_genes[0])

(continues on next page)

4.5. Minimal Cut Sets (MCS) 53

StrainDesign, Release 1.11

(continued from previous page)

cobra.manipulation.remove_genes(iml_14bdo,frd_genes[1:])
frd_genes[0].name = 'frdX'

substitute GPR rule in CYTBO3_4pp
cyo_genes = [g for g in iml_14bdo.reactions.CYTBO3_4pp.genes]
iml_14bdo.reactions.CYTBO3_4pp.gene_reaction_rule = str(cyo_genes[0])
cobra.manipulation.remove_genes(iml_14bdo,cyo_genes[1:])
cyo_genes[0].name = 'cyoX'

substitute GPR rule in THD2pp
pnt_genes = [g for g in iml_14bdo.reactions.THD2pp.genes]
iml_14bdo.reactions.THD2pp.gene_reaction_rule = str(pnt_genes[0])
cobra.manipulation.remove_genes(iml_14bdo,pnt_genes[1:])
pnt_genes[0].name = 'pntX'

substitute GPR rule in PDH and AKGDH
ace_genes = [g for g in iml_14bdo.genes if g.name in ['aceE', 'aceF']]
sucAB_genes = [g for g in iml_14bdo.genes if g.name in ['sucA', 'sucB']]
lpd = [g for g in iml_14bdo.genes if g.name == 'lpd'][0]
iml_14bdo.reactions.PDH.gene_reaction_rule = str(ace_genes[0])+' and '+str(lpd)
iml_14bdo.reactions.AKGDH.gene_reaction_rule = str(sucAB_genes[0])+' and '+str(lpd)
cobra.manipulation.remove_genes(iml_14bdo,ace_genes[1:])
cobra.manipulation.remove_genes(iml_14bdo,sucAB_genes[1:])
ace_genes[0].name = 'aceEF'
sucAB_genes[0].name = 'sucAB'

substitute GPR rule in SUCOAS
sucCD_genes = [g for g in iml_14bdo.reactions.SUCOAS.genes]
iml_14bdo.reactions.SUCOAS.gene_reaction_rule = str(sucCD_genes[0])
cobra.manipulation.remove_genes(iml_14bdo,sucCD_genes[1:])
sucCD_genes[0].name = 'sucCD'

substitute GPR rule in SUCDi
sdh_genes = [g for g in iml_14bdo.reactions.SUCDi.genes]
iml_14bdo.reactions.SUCDi.gene_reaction_rule = str(sdh_genes[0])
cobra.manipulation.remove_genes(iml_14bdo,sdh_genes[1:])
sdh_genes[0].name = 'sdhX'

[21]: sd.plot_flux_space(iml_14bdo, ('BIOMASS_Ec_iML1515_core_75p37M',('EX_14bdo_e','-EX_glc__
→˓D_e')));

54 Chapter 4. How to cite:

StrainDesign, Release 1.11

As in the small-scale setup, we set up again the SUPRESS and PROTECT modules to enforce substrate-uptake-coupled
production of 1,4-BDO. The genome-scale model contains many more secondary pathways that can be used to disrupt
SUCP. We therefore start with a conservative setup of demanding a minimum product yield of 0.1

𝑚𝑜𝑙1,4-𝐵𝐷𝑂

𝑚𝑜𝑙𝐷-𝐺𝑙𝑢𝑐𝑜𝑠𝑒
. At the

same time we ensure that growth is still possible at rates of 0.05 ℎ−1 and above.

[22]: min_14bdo_yield = 0.25
min_growth = 0.1
module_suppress = sd.SDModule(iml_14bdo,sd.names.SUPPRESS,constraints=f'EX_14bdo_e +
→˓{min_14bdo_yield} EX_glc__D_e <= 0')
module_protect = sd.SDModule(iml_14bdo,sd.names.PROTECT, constraints=f'BIOMASS_Ec_
→˓iML1515_core_75p37M>={min_growth}')

Plotted:

[23]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(iml_14bdo,

('BIOMASS_Ec_iML1515_core_75p37M',('EX_
→˓14bdo_e','-EX_glc__D_e')),

show=False);
_, _, plot2 = sd.plot_flux_space(iml_14bdo,

(f'BIOMASS_Ec_iML1515_core_75p37M',('EX_
→˓14bdo_e','-EX_glc__D_e')),

constraints=f'BIOMASS_Ec_iML1515_core_
→˓75p37M >= {min_growth}',

show=False);
plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
pGCP design plot
_, _, plot3 = sd.plot_flux_space(iml_14bdo,

('BIOMASS_Ec_iML1515_core_75p37M',('EX_
→˓14bdo_e','-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
(continues on next page)

4.5. Minimal Cut Sets (MCS) 55

StrainDesign, Release 1.11

(continued from previous page)

→˓secretion.
constraints=f'EX_14bdo_e + {min_14bdo_

→˓yield} EX_glc__D_e <= 0',
show=False);

plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')
adjust axes limits and show plot
plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

In the genome-case setup using iML1515, it is still unnecessary to exclude the 0-vector explicitly, since it is already
excluded by default due to the minimum ATP maintenance demand.

We can now proceed with the strain design computation. Since we normally don’t know if solutions to our strain design
problems exist, and even more so in genome-scale setups, we will start the computation with the most relaxed settings
possible. This means, we compute only one single solution, without a time limit, while omitting the minimality demand
in the solutions and allow up to 25 knockouts. We also activate logging to follow the progress of the computation. If
this computation is not successful on the first run, we should retry. The success of genome-scale computations often
depends on the MILP search tree, whose construction varies with different computation seeds. A repeated computation
may therefore conclude in a different (but also valid) strain design solution. Generally, it is possible that a computation
completes in a couple of minutes, while the repetitions runs into timeout.

[24]: import logging
logging.basicConfig(level=logging.INFO)

allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in iml_14bdo.genes}
gko_cost.pop('s0001')
gko_cost.pop('akgdc')
gko_cost.pop('sscoar')
allow knock-in of akgdc and sscoar
gki_cost = {'akgdc':1, 'sscoar':1}
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
Compute strain designs

(continues on next page)

56 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

sols = sd.compute_strain_designs(iml_14bdo,
sd_modules = [module_suppress, module_protect],
max_solutions = 1,
max_cost = 40,
ko_cost = ko_cost,
gko_cost = gko_cost,
gki_cost = gki_cost,
solution_approach = sd.names.ANY)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.reaction_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (1485 genes, 2268 gpr rules).
INFO:root: Simplifyied to 1229 genes and 1853 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (5252 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 2450 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 2341 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 2298 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 2292 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 2288 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (2288 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 2288 reactions, 968 metabolites
INFO:root: 569 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding (also non-optimal) strain designs ...
INFO:root:Searching in full search space.
INFO:root:Minimizing number of interventions in subspace with 35 possible targets.
INFO:root:Strain design with cost 19.0: {'PGL*pgl': -1, 'GLXCL*gcl': -1,
→˓'URIC*ALLTN*XAND*ALLTAMH2*UGCIAMH*allB*allC*allE': -1, 'MALS*glcB*R0_g_b2976_or_g_

(continues on next page)

4.5. Minimal Cut Sets (MCS) 57

StrainDesign, Release 1.11

(continued from previous page)

→˓b4014*aceB*R1_g_b2976_or_g_b4014': -1, 'CITt7pp*citT': -1, 'SUCDi*sdhX': -1,
→˓'AKGDC*akgdc': 1, 'adhE': -1, 'adhP*R1_g_b1241_or_g_b1478': -1, 'satP': -1, 'dcuC*R0_g_
→˓b0621_or_g_b4123_or_g_b4138': -1, 'dcuB': -1, 'dcuA': -1, 'focA*R0_g_b0904_or_g_
→˓b2492*focB*R1_g_b0904_or_g_b2492': -1, 'glcA*R0_g_b2975_or_g_b3603*lldP*R1_g_b2975_or_
→˓g_b3603': -1, 'dauA': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:3 solutions found.

One compressed solution with cost 19.0 found and expanded to 3 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['-adhE', '-satP', '-dcuB', '-dcuA', '-dauA', '-pgl', '-gcl',
→˓'-allB', '-citT', '-sdhX', '+akgdc', '-adhP', '-glcB', '-aceB', '-dcuC', '-focA', '-
→˓focB', '-glcA', '-lldP']

We may plot the computed strain design (yellow) on top of the wild type model (blue), the suppressed fluxes (orange)
and the protected fluxes (green). The designed strain is forced to produce 1,4-butanediol but is still able to grow at a
relatively high rate.

[25]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(iml_14bdo,

('BIOMASS_Ec_iML1515_core_75p37M',('EX_
→˓14bdo_e','-EX_glc__D_e')),

show=False);
_, _, plot2 = sd.plot_flux_space(iml_14bdo,

('BIOMASS_Ec_iML1515_core_75p37M',('EX_
→˓14bdo_e','-EX_glc__D_e')),

constraints=f'BIOMASS_Ec_iML1515_core_
→˓75p37M>={min_growth}',

show=False);
plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')
pGCP design plot
_, _, plot3 = sd.plot_flux_space(iml_14bdo,

('BIOMASS_Ec_iML1515_core_75p37M',('EX_
→˓14bdo_e','-EX_glc__D_e')),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints=f'EX_14bdo_e + {min_14bdo_
→˓yield} EX_glc__D_e <= 0',

show=False);
plot3.set_facecolor('#ED7D31')
plot3.set_edgecolor('#ED7D31')
plotting designed strain
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot4 = sd.plot_flux_space(iml_14bdo,

('BIOMASS_Ec_iML1515_core_75p37M',('EX_
→˓14bdo_e','-EX_glc__D_e')),

(continues on next page)

58 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints=interventions,
show=False);

plot4.set_facecolor('#FFC000')
plot4.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot4.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot4.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

MCS suggests the addition of only one of the two enzymes SSCOAR or AKGDC and suggests the knockout of plenty
of other genes. The knockout suggestions proposed by MCS are often overly conservative. In practice, a subset of
knockouts is sufficient, in particular, knockouts may be unnecessary when the affected pathway does not carry a large
flux in the first place.

4.5.8 Example 7: Suppress flux states in a toy network

The MCS concept can be showcased in a small example network:

Suppose, we want block all metabolic flux through R4 to avoid the production of metabolite E. One can now identify
irreducible sets of reaction knockouts to achieve this. Each of these set is called a minimal cut set, short MCS. This
figure shows all possible MCS for blocking reaction R4.

Set up the according strain design problem by specifying a module that demands the suppression of flux states with
𝑅4 > 0.

Since strict inequalities are not allowed in mixed integer linear programming (MILP), we need to approximate it by an
inclusive inequality and a sufficiently small value 𝜀 > 0. Here we pick 𝜀 = 1, such that the flux states that we aim to
delete are those that fulfill the inequality:

𝑅4 >= 1

4.5. Minimal Cut Sets (MCS) 59

StrainDesign, Release 1.11

[26]: modules = [sd.SDModule(model,sd.names.SUPPRESS,constraints='R4 >= 1')]
modules += [sd.SDModule(model,sd.names.PROTECT, constraints='R3 >= 1')]

sols = sd.compute_strain_designs(model,sd_modules = modules)
for s in sols.reaction_sd:

print(s)

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Compressing Network (10 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 8 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (8 reactions).
INFO:root: Network compression completed. (1 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 8 reactions, 4 metabolites
INFO:root: 8 targetable reactions
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Strain design with cost 1.0: {'R4*R7*R10': -1}
INFO:root:Strain design with cost 1.0: {'R1': -1}
INFO:root:Strain design with cost 1.0: {'R3': -1}
INFO:root:Strain design with cost 2.0: {'R6': -1, 'R8': -1}
INFO:root:Strain design with cost 3.0: {'R2': -1, 'R5': -1, 'R6': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:5 solutions to MILP found.
INFO:root: Decompressing.
INFO:root:7 solutions found.

{'R1': -1.0}
{'R3': -1.0}
{'R4': -1.0}
{'R7': -1.0}
{'R10': -1.0}
{'R6': -1.0, 'R8': -1.0}
{'R2': -1.0, 'R5': -1.0, 'R6': -1.0}

An adequate value for 𝜀 can inferred from the model, i.e., the coefficients of the stoichiometric matrix and the flux
boundaries. In the shown example values of 1e-7 up to 50 will yield the same results. However, too small values may
result in longer runtimes or numerical issues. While large values may not approximate the strict inequality well enough.

60 Chapter 4. How to cite:

StrainDesign, Release 1.11

4.5.9 Example 8: Suppress and protect flux states in a toy network

It may sometimes be required to protect certain flux states, for instance, to guarantee that the model stays feasible
despite the deletion, or to guarantee that microbial growth is still possible despite the introduced where R4 must be
deleted and additionally demand that R3 must still be able to carry flux.

[27]: import straindesign as sd
import cobra

model = cobra.io.read_sbml_model('../../../tests/model_small_example.xml')

modules = [sd.SDModule(model,sd.names.SUPPRESS,constraints='R4 >= 1')]
modules += [sd.SDModule(model,sd.names.PROTECT, constraints='R3 >= 1')]

sols = sd.compute_strain_designs(model,sd_modules = modules)
for s in sols.reaction_sd:

print(s)

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Compressing Network (10 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 8 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (8 reactions).
INFO:root: Network compression completed. (1 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 8 reactions, 4 metabolites
INFO:root: 7 targetable reactions
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Strain design with cost 1.0: {'R4*R7*R10': -1}
INFO:root:Strain design with cost 1.0: {'R1': -1}
INFO:root:Strain design with cost 2.0: {'R6': -1, 'R8': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:3 solutions to MILP found.
INFO:root: Decompressing.
INFO:root:5 solutions found.

{'R1': -1.0}
{'R4': -1.0}
{'R7': -1.0}
{'R10': -1.0}
{'R6': -1.0, 'R8': -1.0}

As can be seen, the computation returns the 5 out of 7 MCS that block R4 but not R3. The set of theses constrained
MCS (cMCS) is a subset of the former MCS solution pool.

4.5. Minimal Cut Sets (MCS) 61

StrainDesign, Release 1.11

4.5.10 Theoretical background

In the simplest case, the Minimal Cut Set approach seeks to identify the smallest set of knockouts that render undesired
flux states, such as flux states with poor productivity or yield, unattainable. In reference to the space of steady-state
flux vectors: one introduces knockouts that exclude a certain flux-subspace from the space of feasible flux states.

(Mixed integer) linear programming operates on feasible problem spaces and, per se, does not allow sub-problems to
be infeasible. To express the infeasibility of a certain sub-problem, one needs to formulate an equivalent but “mirrored”
problem whose feasibility under any conditions coincides with the infeasibility of the original problem. Farkas’ Lemma
is a theorem that will serve for exactly that purpose. It states that, to a system of linear inequalities, a second system of
linear inequalities can be defined such that one and only one of the two problems is feasible. We call the original system
the primary and secondary system the Farkas-dual. The feasibility of one problem is a certificate for the infeasibility
of the other one.

Exactly one of the following is true:
Ax ≤ b or Aᵀy = 0, y ≥ 0, yᵀb < 0.

Farkas-duality is closely related to Lagrange-duality in Linear Progamming and variables in one problem correspond
to constraints in the other. When we introduce interventions (i.e., we force certain flux variables to take the value 0),
we need to adapt the Farkas-dual that we use in the MCS-MILP accordingly. When a variable is more constrained in
one problem (or fixed to zero), the other problem relaxes in the corresponding constraint (up to the complete lifting of
the constraint).

In the following we show how Farkas’ Lemma can be used to construct the MCS-MILP. We start with the original MCS-
system simplified as AT · x = 0 ≤ bT that is rendered infeasible through the introduction of knockouts as additional
constraints. [︂

AT

IKO

]︂
x
≤
=

[︂
bT

0

]︂
.

The introduced permanent knockouts will later be controlled through binary decision variables. It must be noted that
the constraints only render the primal system infeasible when they contradict the primal system. As was mentioned
above, it is therefore not possible to use undesired systems that have the zero vector x = 0 as a feasible solution because
then even the knockout of all reactions would not make the primal system infeasible.

Using Farkas-dualization, the dual system is given by:[︂
Aᵀ

T IKO

bᵀ
T 0

]︂ [︂
y
v

]︂
=
≤

[︂
0
−1

]︂
y ≥ 0,

which is, per definition, feasible. The single inequality in the last row corresponds to bᵀy <0 of the Farkas-dual
system. The latter needs to be replaced with bᵀ

Ty ≤ − 1 because the system will later be used in a MILP that cannot
handle strict inequalities. The replacement is allowed because any found solution of the Farkas-dual can be scaled to
also fulfill bᵀ

Ty ≤− 1 without affecting the support of the solution (which makes up the MCS).

As can be seen, the variable knockouts in the primal (IKO x = 0) translate to the variables v in the Farkas-dual system
that mime the knockout of all dual constraints by allowing for arbitrary large slack. This system can now be used to
identify MCS, since a minimal subset of constraint relaxations (indicated by 𝑣𝑖 ̸= 0) that solves the Farkas-dual system
corresponds directly to a minimal subset of primal knockout-constraints within IKO x = 0 that keeps the primal system
infeasible. Hence, every solution of the problem with a support-minimal vector v represents one MCS.

A constraint can be switched on or off by controlling its slack variable 𝑣𝑖 by a corresponding binary variable 𝑧𝑖 either
via indicator constraints,

𝑧𝑖 = 0 → 𝑣𝑖 = 0,

62 Chapter 4. How to cite:

StrainDesign, Release 1.11

or with the big-M method (with M being a sufficiently large number)

−𝑀 · 𝑧𝑖 ≤ 𝑣𝑖 ≤ 𝑀 · 𝑧𝑖.

In this case, there is a 1:1 association of metabolic knockouts, indicated by 𝑧𝑖 and slack variables 𝑣𝑖. With the binary
variables 𝑧𝑖 at hand, we may now finally pose a MILP problem with an objective function that minimizes the number
of interventions to block the target system (we use here the version with indicator constraints):

minimize
∑︀

𝑧𝑖

subject to

[︂
Aᵀ

T IKO

bᵀ
T 0

]︂ [︂
y
v

]︂
=
≤

[︂
0
−1

]︂
∀𝑖 : 𝑧𝑖 = 0 → 𝑣𝑖 = 0
y ≥ 0, 𝑧𝑖 ∈ {0, 1}.

This MILP finds the smallest irreducible set of interventions (support-minimal in v) that blocks the target system, hence
an MCS with the smallest possible cardinality.

We note that an even more concise formulation can be constructed by omitting the slack-variables 𝑣𝑖 and linking the
removal of constraints directly to 𝑧𝑖:

minimize
∑︀

𝑧𝑖

subject to
[︂
bᵀ
T 0
0 AD

]︂ [︂
y
x

]︂
≤
≤

[︂
−1
bD

]︂
∀𝑖 : 𝑧𝑖 = 0 → Aᵀ

T,𝑖y = 0

∀𝑖 : 𝑧𝑖 = 1 → 𝑥𝑖 = 0
y ≥ 0, 𝑧𝑖 ∈ {0, 1}.

The MCS 𝑆 (containing the indices of the knocked-out reactions), computed by the MILP, is given by 𝑆 = {𝑖|𝑧𝑖 = 1}.
Multiple MCS solutions (with increasing cardinality) can be found by excluding previously found solutions and their
supersets through integer cut constraints and solving the MILP repeatedly.

4.6 Multi-level strain optimization approaches

Several strain design approaches use MILPs with nested optimization to enforce growth-coupled production. As the
first nested optimization algorithm, OptKnock [2] aimed to resolve the conflict between the microbial objective of fast
growth with the engineering goal of fast production. It therefore constructs a max-max problem for the maximization
of product synthesis under the assumption that the cell itself, will maximize its growth rate. One problem is that this
formulation leads to overly optimistic strain designs, since it assumes that a cell would maximize production when
attaining its maximal growth rate. In the worst case, however (potentially growth coupled prodcution), a cell might
turn off production completely.

Successors of OptKnock, such as RobustKnock [3] and OptCouple [4] have overcome this problem since they guarantee
production at maximum growth (weakly growth-coupled production). In the following sections we will explain how
one can compute strain designs with OptKnock, RobustKnock and OptCouple, and how these methods can be combined
with the minimial cut set approach.

[1]: import straindesign as sd
import cobra

ecc = cobra.io.load_model('e_coli_core')

Set parameter Username
Academic license - for non-commercial use only - expires 2023-07-20

For the following examples we again look at 1,4-BDO production. Hence, we first need to introduce the 1,4-BDO
pathway again into the e_coli_core model and ensure that it is operational.

4.6. Multi-level strain optimization approaches 63

https://straindesign.readthedocs.io/en/latest/index.html#ref2
https://straindesign.readthedocs.io/en/latest/index.html#ref3
https://straindesign.readthedocs.io/en/latest/index.html#ref4

StrainDesign, Release 1.11

[2]: # Create copy of model to which pathway will be added
ecc_14bdo = ecc.copy()

Add metabolites to model
ecc_14bdo.add_metabolites([cobra.Metabolite('sucsal_c'),# Succinic semialdehyde

cobra.Metabolite('4hb_c'), # 4-Hydroxybutanoate
cobra.Metabolite('4hbcoa_c'),# 4-Hydroxybutyryl-CoA
cobra.Metabolite('4hbal_c'), # 4-Hydroxybutanal
cobra.Metabolite('14bdo_c'), # Butane-1,4-diol (cytopl.)
cobra.Metabolite('14bdo_p'), # Butane-1,4-diol (peripl.)
cobra.Metabolite('14bdo_e') # Butane-1,4-diol (extrac.)
])

Create reactions
SSCOARx = cobra.Reaction('SSCOARx')
AKGDC = cobra.Reaction('AKGDC')
HBD = cobra.Reaction('4HBD')
HBCT = cobra.Reaction('4HBCT')
HBDH = cobra.Reaction('4HBDH')
HBDx = cobra.Reaction('4HBDx')
BDOtpp = cobra.Reaction('14BDOtpp')
BDOtex = cobra.Reaction('14BDOtex')
EX_14bdo_e = cobra.Reaction('EX_14bdo_e')

Add reactions to model
ecc_14bdo.add_reactions([SSCOARx,

AKGDC,
HBD,
HBCT,
HBDH,
HBDx,
BDOtpp,
BDOtex,
EX_14bdo_e])

Define reaction equations
SSCOARx.reaction = '1 h_c + 1 nadph_c + 1 succoa_c -> 1 coa_c + 1 nadp_c + 1 sucsal_c'
AKGDC.reaction = '1 akg_c + 1 h_c -> 1 co2_c + 1 sucsal_c'
HBD.reaction = '1 h_c + 1 nadh_c + 1 sucsal_c -> 1 4hb_c + 1 nad_c'
HBCT.reaction = '1 4hb_c + 1 accoa_c -> 1 4hbcoa_c + 1 ac_c'
HBDH.reaction = '1 4hbcoa_c + 1 h_c + 1 nadh_c -> 1 4hbal_c + 1 coa_c + 1 nad_c'
HBDx.reaction = '1 4hbal_c + 1 h_c + 1 nadh_c -> 1 14bdo_c + 1 nad_c'
BDOtpp.reaction = '1 14bdo_c -> 1 14bdo_p'
BDOtex.reaction = '1 14bdo_p -> 1 14bdo_e'
EX_14bdo_e.reaction = '1 14bdo_e ->'

Verify that pathway is operational
sol = sd.fba(ecc_14bdo,obj='EX_14bdo_e',obj_sense='max')
print(f"Maximum possible 1,4-BDO synthesis rate: {sol.objective_value}.")

Read LP format model from file C:\Users\Philipp\AppData\Local\Temp\tmp_htaelki.lp
Reading time = 0.00 seconds
: 72 rows, 190 columns, 720 nonzeros

(continues on next page)

64 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

Maximum possible 1,4-BDO synthesis rate: 10.252923076923079.

4.6.1 OptKnock

4.6.1.1 Example 9: OptKnock strain design

Optknock [2] is based on a bi-level optimization problem:

maximize 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

subject to

maximize 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠

subject to S v = 0
𝑣𝐵𝑀 ≥ 𝑣𝑚𝑖𝑛

𝐵𝑀

(1 − 𝑧𝑖) · 𝑙𝑏𝑖 ≤ 𝑣𝑖 ≤ (1 − 𝑧𝑖) · 𝑢𝑏𝑖, ∀𝑖 ∈ {1, . . . , 𝑛}∑︀
𝑧𝑖 ≤ maxKOs

𝑧𝑖 ∈ {0, 1}

The nested optimization is translated into a single-layer problem and can then be solved as a mixed-integer linear
problem (MILP).

Translating the nested optimization into a single level optimization yields:

maximize 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

subject to⎡⎢⎢⎣
G 0 0
D 0 0

−cᵀ gᵀ 0
0 Gᵀ IKO

⎤⎥⎥⎦
⎡⎣vy
s

⎤⎦ ≤
≤
≤
=

⎡⎢⎢⎣
g
d
0
c

⎤⎥⎥⎦
∀𝑖 : 𝑧𝑖 = 1 → 𝑣𝑖 = 0

∀𝑖 : 𝑧𝑖 = 0 → 𝑠𝑖 = 0∑︁
𝑧𝑖 ≤ 𝑀𝑎𝑥𝑁𝑜𝐾𝑂

y ≥ 0, 𝑧 ∈ {0, 1}

The steps of translating a bi-level problem to a MILP are automated in StrainDesign. In the following, we will compute
OptKnock strain designs using e_coli_core.

An advantage of OptKnock strain designs is that they often allow for a higher maximal growth rate. However, the
predicted strain designs are often overly optimistic since they imply that the cells are able to actually reach their stoi-
chiometrically highest possible growth rate and then also tune teir metabolism towards production. OptKnock strain
designs might be preferred if the production pathway is known to be well expressed and active, even without introduc-
ing knockouts. OptKnock may then assure that laboratory evolution selects against production. We set up the strain
design module for computing OptKnock strain desings. The OptKnock module consists of an outer and inner objective
and additional constraints. The additional constraints are used to enforce the minimal desired growth rate.

[3]: module_optknock = sd.SDModule(ecc_14bdo,sd.names.OPTKNOCK,
inner_objective='BIOMASS_Ecoli_core_w_GAM',
outer_objective='EX_14bdo_e',
constraints='BIOMASS_Ecoli_core_w_GAM >= 0.5')

We then call the strain design function with the constructed module. Since OptKnock uses an outer objective, we
should use the solution approach ‘BEST’ to enforce optimality. By default, inner and outer objective functions are
defined in the sense of maximization for minimization, the inner_opt_sense and outer_opt_sense can be set to
'maximize' or one can simply use negative coefficients in the objective functions.

4.6. Multi-level strain optimization approaches 65

https://straindesign.readthedocs.io/en/latest/index.html#ref2

StrainDesign, Release 1.11

[4]: import logging
logging.basicConfig(level=logging.INFO)
Compute strain designs
allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

sols = sd.compute_strain_designs(ecc_14bdo,
sd_modules = module_optknock,
max_solutions = 1,
max_cost = 30,
gko_cost = gko_cost,
ko_cost = ko_cost,
ki_cost = ki_cost,
solution_approach = sd.names.BEST)

Print solution
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

INFO:root:Preparing strain design computation.
INFO:root: Using gurobi for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 86 genes and 49 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (267 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 149 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 128 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 122 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 121 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 120 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (120 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:

(continues on next page)

66 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Model size: 120 reactions, 71 metabolites
INFO:root: 44 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: gurobi.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Found solution with objective value 2.6195399380012496
INFO:root:Minimizing number of interventions in subspace with 16 possible targets.
INFO:root:Strain design with cost 16.0: {'PFL*EX_for_e*pflA*pflB*R_g_b0902_and_g_
→˓b0903*R0_g_b0902_and_g_b0903_or_g_b0902_and_g_b3114_or_g_b3951_and_g_b3952*tdcE*R_g_
→˓b0902_and_g_b3114*R1_g_b0902_and_g_b0903_or_g_b0902_and_g_b3114_or_g_b3951_and_g_
→˓b3952...': -1, 'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_b1676_or_g_b1854': -1,
→˓'FRD7*frdD*frdC*frdB*frdA*R_g_b4151_and_g_b4152_and_g_b4153_and_g_b4154': -1, 'ME1*maeA
→˓': -1, 'ME2*maeB': -1, 'AKGDC': 1, 'pgi': -1, 'kgtP': -1, 'purT*R0_g_b1849_or_g_b2296_
→˓or_g_b3115*ackA*R1_g_b1849_or_g_b2296_or_g_b3115*tdcD*R2_g_b1849_or_g_b2296_or_g_b3115
→˓': -1, 'sucC*sucD*R_g_b0728_and_g_b0729': -1, 'gdhA': -1, 'mdh': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:32 solutions found.

One compressed solution with cost 16.0 found and expanded to 32 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+AKGDC', '-pgi', '-kgtP', '-gdhA', '-mdh', '-pflA', '-frdD',
→˓'-maeA', '-maeB', '-pflD', '-purT', '-ackA', '-tdcD', '-pykF', '-pykA', '-sucC']

We can now compare the computed strain design to the wild type and the minimal enforced growth rate. As OptKnock
is rate instead of yield based, we plot our strain designs in the production envelope.

[5]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
show=False);

Plot minimal enforced growth rate
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
constraints='BIOMASS_Ecoli_core_w_GAM>=0.5

→˓',
show=False);

plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')

OptKnock design plot
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
The sign of the glucose exchange␣

→˓reaction is flipped since
reaction is defined in the direction of␣

→˓secretion.
constraints=interventions,

(continues on next page)

4.6. Multi-level strain optimization approaches 67

StrainDesign, Release 1.11

(continued from previous page)

show=False);
plot3.set_facecolor('#FFC000')
plot3.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

The computed strain design generates a pGCP strain design with a relatively high maximal growth rate, however, at
the cost of relatively many knockouts. The plot shows that OptKnock has exploited all means to improve maximal
production at maximum growth. The maximum growth rate is only slightly above the demanded minimum.

4.6.1.2 Example 10: OptKnock strain design with a tilted objective function

The last example showed that predicted strain designs not always guarantee product synthesis at maximum growth.
A tilted objective function can be used to simulate that the cell not only maximizes growth but also minimizes prod-
uct synthesis and thus opposes the engineering goal. Factoring in this secondary goal by the cell with a sufficiently
small objective coefficient will lead to more agressive stain designs that counteract the cells possible minimization of
production.

[6]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
show=False);

Plot minimal enforced growth rate
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
constraints='BIOMASS_Ecoli_core_w_GAM>=0.5

→˓',
show=False);

plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')

(continues on next page)

68 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

module_tilted_optknock = sd.SDModule(ecc_14bdo,sd.names.OPTKNOCK,
inner_objective='BIOMASS_Ecoli_core_w_GAM - 0.001 EX_14bdo_

→˓e',
outer_objective='EX_14bdo_e',
constraints='BIOMASS_Ecoli_core_w_GAM >= 0.5')

allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

sols = sd.compute_strain_designs(ecc_14bdo,
sd_modules = module_tilted_optknock,
time_limit = 300,
max_solutions = 1,
max_cost = 30,
gko_cost = gko_cost,
ko_cost = ko_cost,
ki_cost = ki_cost,
solution_approach = sd.names.BEST)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

OptKnock design plot
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
The sign of the glucose exchange␣

→˓reaction is flipped since
reaction is defined in the direction of␣

→˓secretion.
constraints=interventions,
show=False);

plot3.set_facecolor('#FFC000')
plot3.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

INFO:root:Preparing strain design computation.
INFO:root: Using gurobi for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.

(continues on next page)

4.6. Multi-level strain optimization approaches 69

StrainDesign, Release 1.11

(continued from previous page)

INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 86 genes and 49 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (267 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 149 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 128 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 122 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 121 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 120 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (120 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 120 reactions, 71 metabolites
INFO:root: 44 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: gurobi.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Found solution with objective value 2.6195399376393156
INFO:root:Minimizing number of interventions in subspace with 18 possible targets.
INFO:root:Strain design with cost 13.0: {'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_b1676_
→˓or_g_b1854': -1, 'ICL*MALS*aceA*glcB*R0_g_b2976_or_g_b4014*aceB*R1_g_b2976_or_g_b4014':
→˓ -1, 'ME1*maeA': -1, 'ME2*maeB': -1, 'AKGDC': 1, 'pgi': -1, 'kgtP': -1, 'pta*R0_g_
→˓b2297_or_g_b2458*eutD*R1_g_b2297_or_g_b2458': -1, 'sucC*sucD*R_g_b0728_and_g_b0729': -
→˓1, 'gdhA': -1, 'gltP': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:4 solutions found.

One compressed solution with cost 13.0 found and expanded to 4 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+AKGDC', '-pgi', '-kgtP', '-gdhA', '-gltP', '-aceA', '-maeA',
→˓ '-maeB', '-pta', '-eutD', '-pykF', '-pykA', '-sucC']

70 Chapter 4. How to cite:

StrainDesign, Release 1.11

As a result, we obtain an at least weakly growth coupled strain design.

4.6.1.3 Example 11: Genome-scale OptKnock strain design

Other than RobustKnock and OptCouple, OptKnock’s computational effort is moderate so that the approach may be
used in genome scale metabolic models. The first steps of model manipulation are identical to the ones in example 6.

[7]: import straindesign as sd
import cobra

cobra.Configuration().solver = 'cplex'
ijo = cobra.io.load_model('iJO1366')

Create copy of model to which pathway will be added
ijo_14bdo = ijo.copy()
If available, set the solver to cplex or gurobi. This will increase the chances
of sucess enormously
ijo_14bdo.solver = 'cplex'

Add metabolites to model
ijo_14bdo.add_metabolites([cobra.Metabolite('4hb_c'), # 4-Hydroxybutanoate

cobra.Metabolite('4hbcoa_c'),# 4-Hydroxybutyryl-CoA
cobra.Metabolite('4hbal_c'), # 4-Hydroxybutanal
cobra.Metabolite('14bdo_c'), # Butane-1,4-diol (cytopl.)
cobra.Metabolite('14bdo_p'), # Butane-1,4-diol (peripl.)
cobra.Metabolite('14bdo_e') # Butane-1,4-diol (extrac.)
])

Create reactions
AKGDC = cobra.Reaction('AKGDC')
SSCOARx = cobra.Reaction('SSCOARx')
HBD = cobra.Reaction('4HBD')
HBCT = cobra.Reaction('4HBCT')
HBDH = cobra.Reaction('4HBDH')
HBDx = cobra.Reaction('4HBDx')

(continues on next page)

4.6. Multi-level strain optimization approaches 71

StrainDesign, Release 1.11

(continued from previous page)

BDOtpp = cobra.Reaction('14BDOtpp')
BDOtex = cobra.Reaction('14BDOtex')
EX_14bdo_e = cobra.Reaction('EX_14bdo_e')

Add reactions to model
ijo_14bdo.add_reactions([SSCOARx,

AKGDC,
HBD,
HBCT,
HBDH,
HBDx,
BDOtpp,
BDOtex,
EX_14bdo_e])

Define reaction equations
SSCOARx.reaction = '1 h_c + 1 nadph_c + 1 succoa_c -> 1 coa_c + 1 nadp_c + 1 sucsal_c'
AKGDC.reaction = '1 akg_c + 1 h_c -> 1 co2_c + 1 sucsal_c'
HBD.reaction = '1 h_c + 1 nadh_c + 1 sucsal_c -> 1 4hb_c + 1 nad_c'
HBCT.reaction = '1 4hb_c + 1 accoa_c -> 1 4hbcoa_c + 1 ac_c'
HBDH.reaction = '1 4hbcoa_c + 1 h_c + 1 nadh_c -> 1 4hbal_c + 1 coa_c + 1 nad_c'
HBDx.reaction = '1 4hbal_c + 1 h_c + 1 nadh_c -> 1 14bdo_c + 1 nad_c'
BDOtpp.reaction = '1 14bdo_c -> 1 14bdo_p'
BDOtex.reaction = '1 14bdo_p -> 1 14bdo_e'
EX_14bdo_e.reaction = '1 14bdo_e ->'

define gene rules for knock-inable genes
SSCOARx.gene_reaction_rule = 'gsscoar'
AKGDC.gene_reaction_rule = 'gakgdc'

exchange_reacs = [r for r in ijo_14bdo.reactions if all(s<0 for s in r.metabolites.
→˓values())]
shut all exchange fluxes
for r in exchange_reacs:

r.upper_bound = 0.0

shut CO2 uptake
ijo_14bdo.reactions.EX_co2_e.lower_bound = 0.0

keep main fermentation products open
ijo_14bdo.reactions.EX_14bdo_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_ac_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_co2_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_etoh_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_for_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_h2_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_h2o2_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_h2o_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_h_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_lac__D_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_meoh_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_o2_e.upper_bound = 1000.0

(continues on next page)

72 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

ijo_14bdo.reactions.EX_succ_e.upper_bound = 1000.0
ijo_14bdo.reactions.EX_tungs_e.upper_bound = 1000.0
ijo_14bdo.reactions.DM_4crsol_c.upper_bound = 1000.0
ijo_14bdo.reactions.DM_5drib_c.upper_bound = 1000.0
ijo_14bdo.reactions.DM_aacald_c.upper_bound = 1000.0
ijo_14bdo.reactions.DM_amob_c.upper_bound = 1000.0
ijo_14bdo.reactions.DM_mththf_c.upper_bound = 1000.0
ijo_14bdo.reactions.DM_oxam_c.upper_bound = 1000.0

Verify that pathway is operational
sol = sd.fba(ijo_14bdo,obj='EX_14bdo_e',obj_sense='max')
print(f"Maximum possible 1,4-BDO synthesis rate: {sol.objective_value}.")

Maximum possible 1,4-BDO synthesis rate: 10.659770114941434.

Now that we introduced the 1,4-BDO pathway into the model and prepared it for strain design computation, we can
continue with the problem formulation. We reduce the enforced attainable growth rate to relax the strain design problem.
By introducing a minimum production threshold, we are able to still use the ‘ANY’ approach. This guarantees at least
potentially growth-coupled production, although it is unlikely to identify the strategy with the highetst production
potential this way. If the computation is successful, we can repeat the computation with the ‘BEST’ approach. If the
computation is unsuccessful, one should consider using smaller models, such as iJO1366 or compute reaction instead
of gene interventions.

[8]: import matplotlib.pyplot as plt
import logging
logging.basicConfig(level=logging.INFO)

Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ijo_14bdo,

('BIOMASS_Ec_iJO1366_core_53p95M ','EX_
→˓14bdo_e'),

show=False);
Plot minimal enforced growth rate
_, _, plot2 = sd.plot_flux_space(ijo_14bdo,

('BIOMASS_Ec_iJO1366_core_53p95M ','EX_
→˓14bdo_e'),

constraints=['BIOMASS_Ec_iJO1366_core_
→˓53p95M >=0.2',

'EX_14bdo_e >=3'],
show=False);

plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')

module_tilted_optknock = sd.SDModule(ijo_14bdo,sd.names.OPTKNOCK,
inner_objective='BIOMASS_Ec_iJO1366_core_53p95M ', # - 0.

→˓001 EX_14bdo_e
outer_objective='EX_14bdo_e',
constraints=['BIOMASS_Ec_iJO1366_core_53p95M >= 0.2','EX_

→˓14bdo_e >=3'])

add AKGDC and SSCOARx as adition candidates
ki_cost = {'AKGDC': 1.0, 'SSCOARx':1}
possible knockout of O2

(continues on next page)

4.6. Multi-level strain optimization approaches 73

StrainDesign, Release 1.11

(continued from previous page)

ko_cost = {r.id : 1.0 for r in ijo_14bdo.reactions if r.genes and ijo_14bdo.genes.s0001␣
→˓not in r.genes}
ko_cost.update({'EX_o2_e': 1.0})
remove AKGDC and SSCOARx from knockout candidates
ko_cost.pop('AKGDC')
ko_cost.pop('SSCOARx')
Compute strain designs
sols = sd.compute_strain_designs(ijo_14bdo,

sd_modules = module_tilted_optknock,
max_solutions = 1,
max_cost = 3,
ki_cost = ki_cost,
ko_cost = ko_cost,
solution_approach = sd.names.BEST)

Print solutions
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.reaction_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.reaction_
→˓sd[0].items() if v!=0]}")

OptKnock design plot
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot3 = sd.plot_flux_space(ijo_14bdo,

('BIOMASS_Ec_iJO1366_core_53p95M ','EX_
→˓14bdo_e'),

The sign of the glucose exchange␣
→˓reaction is flipped since

reaction is defined in the direction of␣
→˓secretion.

constraints=interventions,
show=False);

plot3.set_facecolor('#FFC000')
plot3.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

INFO:root:Preparing strain design computation.
INFO:root: Using cplex for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Compressing Network (2592 reactions).
INFO:root: Removing blocked reactions.
c:\Users\Philipp\anaconda3\envs\cnapy-dev\lib\site-packages\cobra\core\group.py:148:␣
→˓UserWarning: need to pass in a list
warn("need to pass in a list")

INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.

(continues on next page)

74 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Reduced to 931 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (931 reactions).
INFO:root: Network compression completed. (1 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 931 reactions, 421 metabolites
INFO:root: 811 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: cplex.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Found solution with objective value 3.9226348048271436
INFO:root:Minimizing number of interventions in subspace with 3 possible targets.
INFO:root:Strain design with cost 3.0: {'ACKr*PTAr': -1, 'AKGDH': -1, 'ATPS4rpp': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root:2 solutions found.

One compressed solution with cost 3.0 found and expanded to 2 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['-AKGDH', '-ATPS4rpp', '-ACKr']

4.6. Multi-level strain optimization approaches 75

StrainDesign, Release 1.11

4.6.2 RobustKnock

The RobustKnock [3] approach usues multi-level optimization in a similar way to OptKnock. Whereas Optknock
guarantees potentially growth-coupled production, RobusKnock guarantees at least weakly growth coupled produc-
tion. This is achieved by introducing a third optimization layer. In order to avoid growth-maximal flux states with
no production, RobustKnock maximizes the production rate at maximum growth under the premise that is previously
minimized. The problem can be formalized as follows:

maximize 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

subject to

minimize 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

subject to

maximize 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠

subject to S v = 0
𝑣𝐵𝑀 ≥ 𝑣𝑚𝑖𝑛

𝐵𝑀

(1 − 𝑧𝑖) · 𝑙𝑏𝑖 ≤ 𝑣𝑖 ≤ (1 − 𝑧𝑖) · 𝑢𝑏𝑖, ∀𝑖 ∈ {1, . . . , 𝑛}∑︀
𝑧𝑖 ≤ maxKOs

𝑧𝑖 ∈ {0, 1}

To translate the presented problem into a single-layer probem that can be used in a Mixed-Integer Linear Problem, one
applies the duality principle twice, once on the original problem, and then once again to the linearized nested problem.
This yields the MILP:

maximize 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

subject to⎡⎢⎢⎢⎢⎣
G 0 0 0 0
D 0 0 0 0

−cᵀprod,min gᵀ 0 cᵀBM 0

0 Gᵀ −cᵀBM 0 IKO

0 0 g G 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v
u
t
r
s

⎤⎥⎥⎥⎥⎦
≤
≤
=
=
≥

⎡⎢⎢⎢⎢⎣
g
d
0

cᵀBM

0

⎤⎥⎥⎥⎥⎦
∀𝑖 : 𝑧𝑖 = 1 → 𝑣𝑖 = 0

∀𝑖 : 𝑧𝑖 = 1 → 𝑟𝑖 = 0

∀𝑖 : 𝑧𝑖 = 0 → 𝑠𝑖 = 0∑︁
𝑧𝑖 ≤ 𝑀𝑎𝑥𝑁𝑜𝐾𝑂

u ≥ 0, 𝑧 ∈ {0, 1}

4.6.2.1 Example 12: RobustKnock strain design

In StrainDesign, computing OptKnock strain designs is not any different from computing OptKnock strategies. One
simply declares a RobustKnock instead of an Optknock module.

[9]: module_robustknock = sd.SDModule(ecc_14bdo,sd.names.ROBUSTKNOCK,
inner_objective='BIOMASS_Ecoli_core_w_GAM',
outer_objective='EX_14bdo_e',
constraints='BIOMASS_Ecoli_core_w_GAM >= 0.5')

Launching the strain design computation:

[10]: import logging
logging.basicConfig(level=logging.INFO)
Compute strain designs
allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}

(continues on next page)

76 Chapter 4. How to cite:

https://straindesign.readthedocs.io/en/latest/index.html#ref3

StrainDesign, Release 1.11

(continued from previous page)

gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

sols = sd.compute_strain_designs(ecc_14bdo,
sd_modules = module_robustknock,
max_solutions = 1,
max_cost = 30,
gko_cost = gko_cost,
ko_cost = ko_cost,
ki_cost = ki_cost,
solution_approach = sd.names.BEST)

Print solution
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

INFO:root:Preparing strain design computation.
INFO:root: Using gurobi for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 86 genes and 49 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (267 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 149 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 128 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 122 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 121 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 120 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (120 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 120 reactions, 71 metabolites
INFO:root: 44 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: gurobi.

(continues on next page)

4.6. Multi-level strain optimization approaches 77

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Found solution with objective value 2.619539938001269
INFO:root:Minimizing number of interventions in subspace with 14 possible targets.
INFO:root:Strain design with cost 13.0: {'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_b1676_
→˓or_g_b1854': -1, 'ICL*MALS*aceA*glcB*R0_g_b2976_or_g_b4014*aceB*R1_g_b2976_or_g_b4014':
→˓ -1, 'ME1*maeA': -1, 'ME2*maeB': -1, 'AKGDC': 1, 'pgi': -1, 'kgtP': -1, 'pta*R0_g_
→˓b2297_or_g_b2458*eutD*R1_g_b2297_or_g_b2458': -1, 'sucC*sucD*R_g_b0728_and_g_b0729': -
→˓1, 'gdhA': -1, 'gltP': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:4 solutions found.

One compressed solution with cost 13.0 found and expanded to 4 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+AKGDC', '-pgi', '-kgtP', '-gdhA', '-gltP', '-aceA', '-maeA',
→˓ '-maeB', '-pta', '-eutD', '-pykF', '-pykA', '-sucC']

Plotting results:

[11]: import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
show=False);

Plot minimal enforced growth rate
_, _, plot2 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
constraints='BIOMASS_Ecoli_core_w_GAM>=0.5

→˓',
show=False);

plot2.set_facecolor('#70AD47')
plot2.set_edgecolor('#70AD47')

OptKnock design plot
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
The sign of the glucose exchange␣

→˓reaction is flipped since
reaction is defined in the direction of␣

→˓secretion.
constraints=interventions,
show=False);

plot3.set_facecolor('#FFC000')
plot3.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

78 Chapter 4. How to cite:

StrainDesign, Release 1.11

The RobustKnock problem is significantly larger than the OptKnock problem. Genome-scale strain design problems are
often computationally too expensive to solve. To assess whether genome-scale computation is possible, one should first
define a very relaxed problem, use reaction KOs and solve with the ‘ANY’ approach before attempting more complex
setups.

4.6.3 OptCouple

Optcouple [4] pursues a slightly different approach from OptKnock and RobustKnock as it aims to maximize the
“growth-coupling potential” (GCP), the span of growth rates ranging from (left) the maximum growth rate without
product synthesis to (right) the global maximum growth rate (Figure below taken from the original publication).

Mathematically, the OptCouple appraoch has many parallels to other nested multi-level approaches. In particular
OptCouple demands the solution of two distinct flux states. The first subproblem determines the globally maximum flux
state. Herefore, LP-duality may be employed to construct a subproblem that is identical to an MCS PROTECT module
with an implicit optimization of growth (and optionally a minimum threshold for productivity). The second flux state
that needs to be referenced has maximum growth under the condition that there is no product synthesis. This is again
similar to the MCS PROTECT module, however the constraint 𝑣𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 0 must be taken into account in the primal
and its dual system. A weakness of OptCouple is that it does not return strain designs with substrate-uptake-coupled
production, since a flux state with no production must exist as a lower reference point.

4.6. Multi-level strain optimization approaches 79

https://straindesign.readthedocs.io/en/latest/index.html#ref4

StrainDesign, Release 1.11

4.6.3.1 Example 13: OptCouple strain design

In StrainDesign, the computation of OptCouple designs is as straightforward as for the other approaches.

[12]: module_optcouple = sd.SDModule(ecc_14bdo,sd.names.OPTCOUPLE,
inner_objective='BIOMASS_Ecoli_core_w_GAM',
prod_id='EX_14bdo_e',
min_gcp=0.3)

import logging
logging.basicConfig(level=logging.INFO)
Compute strain designs
allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

sols = sd.compute_strain_designs(ecc_14bdo,
sd_modules = module_optcouple,
max_solutions = 1,
max_cost = 15,
gko_cost = gko_cost,
ko_cost = ko_cost,
ki_cost = ki_cost,
solution_approach = sd.names.BEST)

Print solution
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

import matplotlib.pyplot as plt
Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
show=False);

OptKnock design plot
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
_, _, plot3 = sd.plot_flux_space(ecc_14bdo,

('BIOMASS_Ecoli_core_w_GAM','EX_14bdo_e'),
The sign of the glucose exchange␣

→˓reaction is flipped since
reaction is defined in the direction of␣

→˓secretion.
constraints=interventions,
show=False);

plot3.set_facecolor('#FFC000')
plot3.set_edgecolor('#FFC000')
adjust axes limits and show plot

(continues on next page)

80 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

plot3.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot3.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

INFO:root:Preparing strain design computation.
INFO:root: Using gurobi for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 127 genes and 63 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (335 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 182 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 154 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 146 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 145 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 144 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (144 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 144 reactions, 84 metabolites
INFO:root: 58 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: gurobi.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Found solution with objective value 0.38539164202549997
INFO:root:Minimizing number of interventions in subspace with 10 possible targets.
INFO:root:Strain design with cost 7.0: {'ME2*maeB': -1, 'AKGDC': 1, 'kgtP': -1, 'rpe*R0_
→˓g_b3386_or_g_b4301*sgcE*R1_g_b3386_or_g_b4301': -1, 'sucC*sucD*R_g_b0728_and_g_b0729':␣
→˓-1, 'pntB*pntA*R_g_b1602_and_g_b1603': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:4 solutions found.

One compressed solution with cost 7.0 found and expanded to 4 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+AKGDC', '-kgtP', '-maeB', '-rpe', '-sgcE', '-sucC', '-pntB']

4.6. Multi-level strain optimization approaches 81

StrainDesign, Release 1.11

As in this case, OptCouple computations often result in directionally growth-coupled strain designs, as the maximum
growth coupling potential is often obtained when the maximal growth rate without production is zero. In our exampe,
we observe a growth-coupling potential of 0.4.

4.6.4 Combining nested optimization strain design with MCS

Nested strain design methods can be combined with the MCS approach to enforce additional properties. This allows
flux space tailoring with unprecedented possibilities and precision.

Warning:
In genome-scale setups the MILP of combined approaches is usually too large for efficient solving.

4.6.4.1 Example 14: Combining OptKnock with a tilted objective function and the MCS approach

Let’s construct a strain design with at least weakly growth-coupled production, while we avoid ethanol nor succinate
as by-products.

We construct the strain design problems with an OptKnock with a tilted objective function and an MCS module as
follows:

[13]: import logging
import matplotlib.pyplot as plt
logging.basicConfig(level=logging.INFO)

Enforce 1,4-BDO production at maximal growth
module_optknock = sd.SDModule(ecc_14bdo,sd.names.OPTKNOCK,

inner_objective='BIOMASS_Ecoli_core_w_GAM - 0.01 EX_14bdo_e
→˓',

outer_objective='EX_14bdo_e',
constraints=['BIOMASS_Ecoli_core_w_GAM>=0.5'])

Suppress Ethanol and Succinate production at maximal growth
module_mcs_suppress_etoh_succ = sd.SDModule(ecc_14bdo,sd.names.SUPPRESS,

(continues on next page)

82 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

inner_objective='BIOMASS_Ecoli_core_w_GAM',
constraints=['EX_etoh_e + EX_succ_e >= 0.1'])

Compute strain designs
allow all gene knockouts except for spontanuos
gko_cost = {g.name:1 for g in ecc_14bdo.genes}
gko_cost.pop('s0001')
possible knockout of O2
ko_cost = {'EX_o2_e': 1}
addition candidates
ki_cost = {'AKGDC':1, 'SSCOARx':1} # AKGDC was added in example 1.c)

sols = sd.compute_strain_designs(ecc_14bdo,
sd_modules = [module_optknock,module_mcs_suppress_etoh_

→˓succ],
max_solutions = 1,
max_cost = 15,
gko_cost = gko_cost,
ko_cost = ko_cost,
ki_cost = ki_cost,
solution_approach = sd.names.BEST)

Print solution
print(f"One compressed solution with cost {sols.sd_cost[0]} found and "+\

f"expanded to {len(sols.gene_sd)} solutions in the uncompressed netork.")
print(f"Example intervention set: {['+'+s if v>0 else '-'+s for s,v in sols.gene_sd[0].
→˓items() if v!=0]}")

%matplotlib inline
Aerobic design plot
interventions = [[{s:1.0},'=',0.0] for s,v in sols.reaction_sd[0].items() if v < 1]
,,plot1 = sd.plot_flux_space(ecc_14bdo,('BIOMASS_Ecoli_core_w_GAM','EX_etoh_e + EX_
→˓succ_e','EX_14bdo_e'),

constraints=interventions,points=50,show=False);
plot1._axes.view_init(20, 60)
plt.show()

INFO:root:Preparing strain design computation.
INFO:root: Using gurobi for solving LPs during preprocessing.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root: FVA to identify blocked reactions and irreversibilities.
INFO:root: FVA(s) to identify essential reactions.
INFO:root:Preprocessing GPR rules (137 genes, 69 gpr rules).
INFO:root: Simplifyied to 86 genes and 49 gpr rules.
INFO:root: Extending metabolic network with gpr associations.
INFO:root:Compressing Network (267 reactions).
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 149 reactions.
INFO:root: Compression 2: Lumping parallel reactions.

(continues on next page)

4.6. Multi-level strain optimization approaches 83

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Reduced to 128 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 122 reactions.
INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 121 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Reduced to 120 reactions.
INFO:root: Compression 6: Lumping parallel reactions.
INFO:root: Last step could not reduce size further (120 reactions).
INFO:root: Network compression completed. (5 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.
INFO:root: FVA(s) in compressed model to identify essential reactions.
INFO:root:Finished preprocessing:
INFO:root: Model size: 120 reactions, 71 metabolites
INFO:root: 44 targetable reactions
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:Constructing strain design MILP for solver: gurobi.
INFO:root: Bounding MILP.
INFO:root:Finding optimal strain designs ...
INFO:root:Found solution with objective value 2.6195399376393134
INFO:root:Minimizing number of interventions in subspace with 13 possible targets.
INFO:root:Strain design with cost 13.0: {'PYK*pykF*R0_g_b1676_or_g_b1854*pykA*R1_g_b1676_
→˓or_g_b1854': -1, 'ICL*MALS*aceA*glcB*R0_g_b2976_or_g_b4014*aceB*R1_g_b2976_or_g_b4014':
→˓ -1, 'ME1*maeA': -1, 'ME2*maeB': -1, 'SSCOARx': 1, 'pgi': -1, 'kgtP': -1, 'pta*R0_g_
→˓b2297_or_g_b2458*eutD*R1_g_b2297_or_g_b2458': -1, 'sucC*sucD*R_g_b0728_and_g_b0729': -
→˓1, 'gdhA': -1, 'gltP': -1}
INFO:root:Finished solving strain design MILP.
INFO:root:1 solutions to MILP found.
INFO:root: Decompressing.
INFO:root: Preparing (reaction-)phenotype prediction of gene intervention strategies.
INFO:root:4 solutions found.

One compressed solution with cost 13.0 found and expanded to 4 solutions in the␣
→˓uncompressed netork.
Example intervention set: ['+SSCOARx', '-pgi', '-kgtP', '-gdhA', '-gltP', '-aceA', '-maeA
→˓', '-maeB', '-pta', '-eutD', '-pykF', '-pykA', '-sucC']

84 Chapter 4. How to cite:

StrainDesign, Release 1.11

The plot shows the flux space of the designed strain. While at lower growth rates ethanol and succinate production
is still possible, there is a growth-based selection against ethanol and succinate producers and in favor of 1,4-BDO
producing phenotypes. The “waves” on top of the shape are artifacts of the plotting grid and would disappear with
infinte resolution.

4.7 Standalone network compression

An effective network compression is essential to any strain design computation. Since it may also be of interest outside
the context of strain design, this example may help you using the network compression routine independently. Likewise,
StrainDesign also offers the integration of GPR rules into the metabolic networks as a separate function.

The network compression routine removes blocked reactions, removes conservation relations and then performs alter-
natingly lumps dependent (compress_model_efmtool) and parallel (compress_model_parallel) reactions. The
compression returns a compressed network and a list of so-called “compression maps”. Each map consists of a dic-
tionary that contains complete information for reversing the compression steps successively and expand information
obtained from the compressed model to the full model. Each entry of each map contains the id of a compressed reac-
tion, associated with the original reaction names and their factor (provided as a rational number) with which they were
lumped.

Furthermore, the user can select reactions that should be exempt from the parallel compression. In the following, we
provide the code snippet that can be used to call the compression.

[1]: from straindesign import compress_model, remove_dummy_bounds
import cobra
import logging
logging.basicConfig(level=logging.INFO)

load model
iml1515 = cobra.io.load_model('iML1515')
replace dummy bounds with infinite
logging.info(f"Replacing dummy bounds of +/- 1000 with infinite.")
remove_dummy_bounds(iml1515)
logging.info(f"The original model contains {len(iml1515.reactions)} reactions.")
cmp_map = compress_model(iml1515)

Set parameter Username

INFO:gurobipy.gurobipy:Set parameter Username

Academic license - for non-commercial use only - expires 2023-07-20

INFO:gurobipy.gurobipy:Academic license - for non-commercial use only - expires 2023-07-
→˓20
INFO:root:Replacing dummy bounds of +/- 1000 with infinite.
WARNING:root: Removing reaction bounds when larger than the cobra-threshold of 1000.
INFO:root:The original model contains 2712 reactions.
INFO:root: Removing blocked reactions.
INFO:root: Translating stoichiometric coefficients to rationals.
INFO:root: Removing conservation relations.
INFO:root: Compression 1: Applying compression from EFM-tool module.
INFO:root: Reduced to 1244 reactions.
INFO:root: Compression 2: Lumping parallel reactions.
INFO:root: Reduced to 1225 reactions.
INFO:root: Compression 3: Applying compression from EFM-tool module.
INFO:root: Reduced to 1216 reactions.

(continues on next page)

4.7. Standalone network compression 85

StrainDesign, Release 1.11

(continued from previous page)

INFO:root: Compression 4: Lumping parallel reactions.
INFO:root: Reduced to 1213 reactions.
INFO:root: Compression 5: Applying compression from EFM-tool module.
INFO:root: Last step could not reduce size further (1213 reactions).
INFO:root: Network compression completed. (4 compression iterations)
INFO:root: Translating stoichiometric coefficients back to float.

Here, the original model of iML1515 was compressed from 2712 to 1213 reactions in 4 steps. The greatest reduction
in size is achieved in the first step. Still, the benefit of the parallel compression should not be underestimated since it
removes superfluous degrees of freedom in the model that don’t add significant information. The resulting compression
maps can be used to translate data between the compressed and the original network.

[2]: # Let us track the compression of the ADK4 reaction
orig_reac = 'ADK4'

for i,c in enumerate(cmp_map):
logging.info(f"Compression step {i+1} was {['parallel' if c['parallel'] else 'linear

→˓'][0]}.")
lumped_reaction = [k for k,v in c['reac_map_exp'].items() if orig_reac in v][0]
if len(c['reac_map_exp'][lumped_reaction]) == 1:

logging.info(f"Reaction '{orig_reac}' was not affected by this reaction")
else:

logging.info(f"Reaction '{orig_reac}' was lumped to {lumped_reaction} with the␣
→˓coefficients {c['reac_map_exp'][lumped_reaction]}.")

orig_reac = lumped_reaction

INFO:root:Compression step 1 was linear.
INFO:root:Reaction 'ADK4' was lumped to ADK4*NTP10 with the coefficients {'ADK4': -1,
→˓'NTP10': 1}.
INFO:root:Compression step 2 was parallel.
INFO:root:Reaction 'ADK4*NTP10' was not affected by this reaction
INFO:root:Compression step 3 was linear.
INFO:root:Reaction 'ADK4*NTP10' was not affected by this reaction
INFO:root:Compression step 4 was parallel.
INFO:root:Reaction 'ADK4*NTP10' was lumped to␣
→˓ADK4*NTP10*NADPHXD*NADPHXE*NADPHHR*NADPHHS*NADHHR*NADHXE*NADHHS*NADHXD with the␣
→˓coefficients {'ADK4*NTP10': 1, 'NADPHXD*NADPHXE*NADPHHR*NADPHHS': 1,
→˓'NADHHR*NADHXE*NADHHS*NADHXD': 1}.

4.7.1 Standalone GPR-integraton

GPR rules can be introduced to the metabolic model in a way that the logical GPR-terms are reflected and the gene
presence or absence can be simulated by setting flux bounds. This can be useful to investigate the space of feasible
steady-state flux vectors after gene knockouts or be used to investigate the role of genes in different elementary flux
modes or vectors.

[3]: from straindesign import extend_model_gpr
import cobra
import logging
logging.basicConfig(level=logging.INFO)
load model

(continues on next page)

86 Chapter 4. How to cite:

StrainDesign, Release 1.11

(continued from previous page)

e_coli_core = cobra.io.load_model('e_coli_core')
extend model with GPR rules using gene-IDs
extend_model_gpr(e_coli_core)
printing the last 10 reactions (corresponding to genes and GPR rules) of the GPR-
→˓extend network
logging.info('The first 95 reactions are original reactions from e_coli_core. All other␣
→˓reactions result from the integration of GPR rules.')
logging.info('Here, we only print the last 10 reactions of the model for showcasing.')
[print(r) for r in e_coli_core.reactions[-10:]];

INFO:root:The first 95 reactions are original reactions from e_coli_core. All other␣
→˓reactions result from the integration of GPR rules.
INFO:root:Here, we only print the last 10 reactions of the model for showcasing.

R_g_b2276_and_g_b2277_and_g_b2278_and_g_b2279_and_g_b2280_and_g_b2281_and_g_b2282_and_g_
→˓b2283_and_g_b2284_and_g_b2285_and_g_b2286_and_g_b2287_and_g_b2288: g_b2276 + g_b2277 +␣
→˓g_b2278 + g_b2279 + g_b2280 + g_b2281 + g_b2282 + g_b2283 + g_b2284 + g_b2285 + g_
→˓b2286 + g_b2287 + g_b2288 --> g_b2276_and_g_b2277_and_g_b2278_and_g_b2279_and_g_b2280_
→˓and_g_b2281_and_g_b2282_and_g_b2283_and_g_b2284_and_g_b2285_and_g_b2286_and_g_b2287_
→˓and_g_b2288
b3962: --> g_b3962
R0_g_b3962_or_g_b1602_and_g_b1603: g_b3962 --> g_b3962_or_g_b1602_and_g_b1603
R1_g_b3962_or_g_b1602_and_g_b1603: g_b1602_and_g_b1603 --> g_b3962_or_g_b1602_and_g_b1603
b0451: --> g_b0451
R0_g_s0001_or_g_b0451: g_s0001 --> g_s0001_or_g_b0451
R1_g_s0001_or_g_b0451: g_b0451 --> g_s0001_or_g_b0451
b0114: --> g_b0114
b0115: --> g_b0115
R_g_b0114_and_g_b0115_and_g_b0116: g_b0114 + g_b0115 + g_b0116 --> g_b0114_and_g_b0115_
→˓and_g_b0116

4.7.1.1 Gene perturbation studies

GPR-extended models can be used to study how single or multiple gene-KOs affect the steady-state flux space. We can
therefore integrate the GPR-rules in the model and then plot flux spaces that take into account knockouts. In the plots
below, we show how knocking out the gene lpd affects bacterial growth and AKG yields.

[4]: import straindesign as sd
import cobra
import logging
import matplotlib.pyplot as plt
logging.basicConfig(level=logging.INFO)
load model
e_coli_core = cobra.io.load_model('e_coli_core')
extend model with GPR rules using gene-names instead of IDs.
sd.extend_model_gpr(e_coli_core, use_names=True)

Wild-type plot
datapoints, triang, plot1 = sd.plot_flux_space(e_coli_core,

('BIOMASS_Ecoli_core_w_GAM',('EX_akg_e','-
→˓EX_glc__D_e')),

show=False);
(continues on next page)

4.7. Standalone network compression 87

StrainDesign, Release 1.11

(continued from previous page)

plotting designed strain
_, _, plot2 = sd.plot_flux_space(e_coli_core,

('BIOMASS_Ecoli_core_w_GAM',('EX_akg_e','-
→˓EX_glc__D_e')),

constraints=['lpd = 0'],
show=False);

plot2.set_facecolor('#FFC000')
plot2.set_edgecolor('#FFC000')
adjust axes limits and show plot
plot2.axes.set_xlim(0, 1.05*max([a[0] for a in datapoints]))
plot2.axes.set_ylim(0, 1.05*max([a[1] for a in datapoints]))
plt.show()

The blue shape represents the wild type and the yellow shape the lpd knockout strain flux space. The model predicts
that the knockout will not affect the globally attainable -ketoglutarate yield, but reduces the maximal possible growth
rate. At higher growth rates, -ketoglutarate yield is reduced.

4.8 CNApy interface

CNApy, a GUI-featured toolbox for metabolic modeling offers a graphical user interface for the modeling and design of
metabolic networks. The software provides a dialog box for specifying strain design problems. A full documentation
can be found here.

88 Chapter 4. How to cite:

https://github.com/cnapy-org/cnapy
https://cnapy-org.github.io/CNApy-guide/

StrainDesign, Release 1.11

4.9 StrainDesign API

4.9.1 straindesign

StrainDesign package for computational metabolic engineering

4.9.1.1 Submodules

straindesign.compute_strain_designs

Function: computing metabolic strain designs (compute_strain_designs)

Module Contents

straindesign.compute_strain_designs.compute_strain_designs(model: cobra.Model, **kwargs: dict)
→ straindesign.SDSolutions

Computes strain designs for a user-defined strain design problem

A number of arguments can be specified to detail the problem and influence the solution process. This function
supports the computation of Minimal Cut Sets (MCS), OptKock, RobustKnock and OptCouple strain designs. It
is possible to combine any of the latter ones with the MCS approach, e.g., to engineer growth coupled production,
but also suppress the production of an undesired by-product. The computation can be started in two different
ways. Either by specifying the computation parameters indivdually or reuse a parameters dictionary from a
previous computation. CNApy stores strain design setup dics as JSON “.sd”-files that can be loaded in python
and used as an input for this function.

4.9. StrainDesign API 89

https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

Example

sols = compute_strain_designs(model, sd_modules=[sd_module1, sd_module2], solution_approach = ‘any’)

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

The model may or may not contain genes/GPR-rules.

• sd_setup (dict) – sd_setup should be a dictionary containing a set of parameters for strain
design computation. The allowed keywords are the same listed hereafter. Therefore, sd_setup
and other arguments (except for model) must not be used together.

• sd_modules ([straindesign.SDModule]) – List of strain design modules that describe
the sub-problems, such as the MCS-like protection or suppression of flux subspaces or the
OptKnock, RobustKnock or OptCouple objective and constraints. The list of modules de-
termines the global objective function of the strain design computation. If only SUPPRESS
and PROTECT modules are used, the strain design computation is MCS-like, such that the
number of interventions is minimized. If a module for one of the nested optimization ap-
proaches is used, the global objective function is retrieved from this module. The number
of SUPPRESS and PROTECT modules is unrestricted and can be combined with the other
modules, however only one of the modules OPTKNOCK, ROBUSKNOCK and OPTCOU-
PLE may be used at a time. For details, see SDModule.

• solver (optional (str)) – (Default: same as defined in model / COBRApy) The solver
that should be used for preparing and carrying out the strain design computation. Allowed
values are ‘cplex’, ‘gurobi’, ‘scip’ and ‘glpk’.

• max_cost (optional (int)) – (Default: inf): The maximum cost threshold for interven-
tions. Every possible intervention is associated with a cost value (1, by default). Strain
designs cannot exceed the max_cost threshold. Individual intervention cost factors may be
defined through ki_cost, ko_cost, gki_cost, gko_cost and reg_cost.

• max_solutions (optional (int)) – (Default: inf) The maximum number of MILP so-
lutions that are generated for a strain design problem. The number of returned strain designs
is usually larger than the number of max_solutions, since a MILP solution is decompressed
to multiple strain designs. When the compress-flag is set to ‘False’ the number of returned
solutions is equal to max_solutions.

• M (optional (int)) – (Default: None) If this value is specified (and non-zero, not None),
the computation uses the big-M method instead of indicator constraints. Since GLPK does
not support indicator constraints it uses the big-M method by default (with M=1000). M
should be chosen ‘sufficiently large’ to avoid computational artifacts and ‘sufficiently small’
to avoid numerical issues.

• compress (optional (bool)) – (Default: True) If ‘True’, the interative network compres-
sor is used.

• gene_kos (optional (bool)) – (Default: False) If ‘True’, strain designs are computed
based on gene-knockouts instead of reaction knockouts. This parameter needs not be defined
if any of ki_cost, ko_cost, gki_cost, gko_cost and reg_cost is used. By default, reactions are
considered as knockout targets.

• ko_cost (optional (dict)) – (Default: None) A dictionary of reaction identifiers and
their associated knockout costs. If not specified, all reactions are treated as knockout can-
didates, equivalent to ko_cost = {‘r1’:1, ‘r2’:1, . . . }. If a subset of reactions is listed in the
dict, all other are not considered as knockout candidates.

• ki_cost (optional (dict)) – (Default: None) A dictionary of reaction identifiers and
their associated costs for addition. If not specified, all reactions are treated as knockout can-

90 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

didates. Reaction addition candidates must be present in the original model with the intended
flux boundaries after insertion. Additions are treated adversely to knockouts, meaning that
their exclusion from the network is not associated with any cost while their presence entails
intervention costs.

• gko_cost (optional (dict)) – (Default: None) A dictionary of gene identifiers and their
associated knockout costs. To reference genes, gene IDs can be used,as well as gene names.
If not specified, genes are not treated as knockout candidates. An exception is the ‘gene_kos’
argument. If ‘gene_kos’ is used, all genes are treated as knockout candidates with interven-
tion costs of 1. This is equivalent to gko_cost = {‘g1’:1, ‘g2’:1, . . . }.

• gki_cost (optional (dict)) – (Default: None) A dictionary of gene identifiers and their
associated addition costs. To reference genes, gene IDs can be used, as well as gene names.
If not specified, none of the genes are treated as addition candidates.

• reg_cost (optional [dict]) – (Default: None) Regulatory interventions candidates can
be optionally specified as a list. Thereby, the constraint marking the regulatory intervention
is put as key and the associated intervention cost is used as the corresponding value. E.g.,
reg_cost = {‘1 EX_o2_e = -1’: 1, . . . <other regulatory interventions>}. Instead of strings,
constraints can also be passed as lists. reg_cost = {[{‘EX_o2_e’:1}, ‘=’, -1]: 1, . . . }

• solution_approach (optional (str)) – (Default: ‘best’) The approach used to find
strain designs. Possible values are ‘any’, ‘best’ or ‘populate’. ‘any’ is usually the fastest
option, since optimality is not enforced. Hereby computed MCS are still irreducible inter-
vention sets, however, not MCS with the fewest possible number of interventions. ‘best’
computes globally optimal strain designs, that is, MCS with the fewest number of interven-
tions, OptKnock strain designs with the highest possible production rate, OptCouple strain
designs with the hightest growth coupling potential etc.. ‘populate’ does the same as ‘best’,
but makes use of CPLEX’ and Gurobi’s populate function to generate multiple strain de-
signs. It is identical to ‘best’ when used with SCIP or GLPK. Attention: If ‘any’ used with
OptKnock, for instance, the MILP may return the wild type as a possible immediately. Tech-
nically, the wiltype fulfills the criterion of maximal growth (inner objective) and maximality
of the global objective is omitted by using ‘any’, so that carrying no product synthesis is
permitted. Additional constraints can be used in the OptKnock problem to circumvent this.
However, Optknock should generally be used with the ‘best’ option.

• time_limit (optional (int)) – (Default: inf) The time limit in seconds for the MILP-
solver.

• advanced (optional (bool)) – Dummy parameters used for the CNApy interface.

• use_scenario (optional (bool)) – Dummy parameters used for the CNApy interface.

Returns
An object that contains all computed strain designs. If strain designs were computed as gene-
interventions, the solution object contains a set of corresponding reaction-interventions that fa-
cilitate the analysis of the computed strain designs with COBRA methods.

Return type
(SDSolutions)

straindesign.compute_strain_designs.postprocess_reg_sd(reg_cost, sd)
Postprocess regulatory interventions

Mark regulatory interventions with true or false

4.9. StrainDesign API 91

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

StrainDesign, Release 1.11

straindesign.cplex_interface

CPLEX solver interface for LP and MILP

Module Contents

class straindesign.cplex_interface.Cplex_MILP_LP(c=None, A_ineq=None, b_ineq=None, A_eq=None,
b_eq=None, lb=None, ub=None, vtype=None,
indic_constr=None)

Bases: cplex.Cplex

CPLEX interface for MILP and LP

This class is a wrapper for the CPLEX-Python API to offer bindings and namings for functions for the construction
and manipulation of MILPs and LPs in an vector-matrix-based manner that are consistent with those of the other
solver interfaces in the StrainDesign package. The purpose is to unify the instructions for operating with MILPs
and LPs throughout StrainDesign.

The CPLEX interface provides support for indicator constraints as well as for the populate function.

Accepts a (mixed integer) linear problem in the form:
minimize(c), subject to: A_ineq * x <= b_ineq, A_eq * x = b_eq, lb <= x <= ub, forall(i) type(x_i) =
vtype(i) (continous, binary, integer), indicator constraints: x(j) = [0|1] -> a_indic * x [<=|=|>=] b_indic

Please ensure that the number of variables and (in)equalities is consistent

Example

cplex = Cplex_MILP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype, indic_constr)

Parameters
• c (list of float) – (Default: None) The objective vector (Objective sense: minimiza-

tion).

• A_ineq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static inequal-
ities.

• b_ineq (list of float) – (Default: None) The right hand side of the static inequalities.

• A_eq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static equalities.

• b_eq (list of float) – (Default: None) The right hand side of the static equalities.

• lb (list of float) – (Default: None) The lower variable bounds.

• ub (list of float) – (Default: None) The upper variable bounds.

• vtype (str) – (Default: None) A character string that specifies the type of each variable:
‘c’ontinous, ‘b’inary or ‘i’nteger

• indic_constr (IndicatorConstraints) – (Default: None) A set of indicator constraints
stored in an object of IndicatorConstraints (see reference manual or docstring).

• Returns – (Cplex_MILP_LP):

A CPLEX MILP/LP interface class.

92 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

StrainDesign, Release 1.11

add_eq_constraints(A_eq, b_eq)
Add equality constraints to the model

Additional equality constraints have the form A_eq * x = b_eq. The number of columns in A_eq must
match with the number of variables x in the problem.

Parameters
• A_eq (sparse.csr_matrix) – The coefficient matrix

• b_eq (list of float) – The right hand side vector

add_ineq_constraints(A_ineq, b_ineq)
Add inequality constraints to the model

Additional inequality constraints have the form A_ineq * x <= b_ineq. The number of columns in A_ineq
must match with the number of variables x in the problem.

Parameters
• A_ineq (sparse.csr_matrix) – The coefficient matrix

• b_ineq (list of float) – The right hand side vector

populate(n)→ Tuple[List, float, float]
Generate a solution pool for MILPs

Example

sols_x, optim, status = cplex.populate()

Returns
(Tuple[List of lists, float, float])

solution_vectors, optimal_value, optimization_status

set_ineq_constraint(idx, a_ineq, b_ineq)
Replace a specific inequality constraint

Replace the constraint with the index idx with the constraint a_ineq*x ~ b_ineq

Parameters
• idx (int) – Index of the constraint

• a_ineq (list of float) – The coefficient vector

• b_ineq (float) – The right hand side value

set_objective(c)
Set the objective function with a vector

set_objective_idx(C)
Set the objective function with index-value pairs

e.g.: C=[[1, 1.0], [4,-0.2]]

set_time_limit(t)
Set the computation time limit (in seconds)

set_ub(ub)
Set the upper bounds to a given vector

4.9. StrainDesign API 93

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

slim_solve()→ float
Solve the MILP or LP, but return only the optimal value

Example

optim = cplex.slim_solve()

Returns
(float)

Optimum value of the objective function.

solve()→ Tuple[List, float, float]
Solve the MILP or LP

Example

sol_x, optim, status = cplex.solve()

Returns
(Tuple[List, float, float])

solution_vector, optimal_value, optimization_status

straindesign.efmtool

Functions for the compression of metabolic networks, taken from the efmtool_link package

Functions in this module not meant to be used outside the compression of networks. For a the documentation of the
efmtool compression provided by StrainDesign, refer to the networktools module.

Module Contents

straindesign.efmtool.basic_columns_rat(mx, tolerance=0)
efmtool: Translate matrix coefficients to rational numbers

straindesign.efmtool.jBigFraction2sympyRat(val)
efmtool: Translate rational numbers to sympy rational numbers

straindesign.efmtool.jBigIntegerPair2sympyRat(numer, denom)

efmtool: Translate big integer pair to sympy rational numbers

straindesign.efmtool.jpypeArrayOfArrays2numpy_mat(jmat)
efmtool: Translate array of arrays to numpy matrix

straindesign.efmtool.numpy_mat2jpypeArrayOfArrays(npmat)
efmtool: Translate matrix to array of arrays

straindesign.efmtool.sympyRat2jBigIntegerPair(val)
efmtool: Translate rational numbers to big integer pair

94 Chapter 4. How to cite:

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

straindesign.glpk_interface

GLPK solver interface for LP and MILP

Module Contents

class straindesign.glpk_interface.GLPK_MILP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype,
indic_constr, M=None)

GLPK interface for MILP and LP

This class is a wrapper for the GLPK-Python API to offer bindings and namings for functions for the construction
and manipulation of MILPs and LPs in an vector-matrix-based manner that are consistent with those of the other
solver interfaces in the StrainDesign package. The purpose is to unify the instructions for operating with MILPs
and LPs throughout StrainDesign.

The GLPK interface does not natively support indicator constraints. They are hence translated to bigM-
constraints when passed to the GLPK constructor (see docstring of IndicatorConstraints). The GLPK interface
does not natively support the populate function. A high level implementation emulates the behavior of populate.

Accepts a (mixed integer) linear problem in the form:
minimize(c), subject to: A_ineq * x <= b_ineq, A_eq * x = b_eq, lb <= x <= ub, forall(i) type(x_i) =
vtype(i) (continous, binary, integer), indicator constraints: x(j) = [0|1] -> a_indic * x [<=|=|>=] b_indic

Please ensure that the number of variables and (in)equalities is consistent

Example

glpk = GLPK_MILP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype, indic_constr, M)

Parameters
• c (list of float) – (Default: None) The objective vector (Objective sense: minimiza-

tion).

• A_ineq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static inequal-
ities.

• b_ineq (list of float) – (Default: None) The right hand side of the static inequalities.

• A_eq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static equalities.

• b_eq (list of float) – (Default: None) The right hand side of the static equalities.

• lb (list of float) – (Default: None) The lower variable bounds.

• ub (list of float) – (Default: None) The upper variable bounds.

• vtype (str) – (Default: None) A character string that specifies the type of each variable:
‘c’ontinous, ‘b’inary or ‘i’nteger

• indic_constr (IndicatorConstraints) – (Default: None) A set of indicator constraints
stored in an object of IndicatorConstraints. To make GLPK compatible with indicator con-
straints, they are translated into bigM-constraints (see reference manual or docstring of In-
dicatorConstraints).

• M (int) – (Default: None) A large value that is used in the translation of indicator constraints
to bigM-constraints. If no value is provided, 1000 is used.

4.9. StrainDesign API 95

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

StrainDesign, Release 1.11

• Returns – (GLPK_MILP_LP):

A GLPK MILP/LP interface class.

addExclusionConstraintsIneq(x)
Function to add exclusion constraint (GLPK compatibility function)

add_eq_constraints(A_eq, b_eq)
Add equality constraints to the model

Additional equality constraints have the form A_eq * x = b_eq. The number of columns in A_eq must
match with the number of variables x in the problem.

Parameters
• A_eq (sparse.csr_matrix) – The coefficient matrix

• b_eq (list of float) – The right hand side vector

add_ineq_constraints(A_ineq, b_ineq)
Add inequality constraints to the model

Additional inequality constraints have the form A_ineq * x <= b_ineq. The number of columns in A_ineq
must match with the number of variables x in the problem.

Parameters
• A_ineq (sparse.csr_matrix) – The coefficient matrix

• b_ineq (list of float) – The right hand side vector

getSolution(status)→ list
Retrieve solution from GLPK backend

populate(pool_limit)→ Tuple[List, float, float]
Generate a solution pool for MILPs

This is only a high-level implementation of the populate function. There is no native support in GLPK.

Example

sols_x, optim, status = glpk.populate()

Returns
(Tuple[List of lists, float, float])

solution_vectors, optimal_value, optimization_status

set_ineq_constraint(idx, a_ineq, b_ineq)
Replace a specific inequality constraint

Replace the constraint with the index idx with the constraint a_ineq*x ~ b_ineq

Parameters
• idx (int) – Index of the constraint

• a_ineq (list of float) – The coefficient vector

• b_ineq (float) – The right hand side value

set_objective(c)
Set the objective function with a vector

96 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

set_objective_idx(C)
Set the objective function with index-value pairs

e.g.: C=[[1, 1.0], [4,-0.2]]

set_time_limit(t)
Set the computation time limit (in seconds)

set_ub(ub)
Set the upper bounds to a given vector

slim_solve()→ float
Solve the MILP or LP, but return only the optimal value

Example

optim = glpk.slim_solve()

Returns
(float)

Optimum value of the objective function.

solve()→ Tuple[List, float, float]
Solve the MILP or LP

Example

sol_x, optim, status = glpk.solve()

Returns
(Tuple[List, float, float])

solution_vector, optimal_value, optimization_status

solve_MILP_LP()→ Tuple[float, int, bool]
Trigger GLPK solution through backend

straindesign.gurobi_interface

Gurobi solver interface for LP and MILP

Module Contents

class straindesign.gurobi_interface.Gurobi_MILP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype,
indic_constr)

Bases: gurobipy.Model

Gurobi interface for MILP and LP

This class is a wrapper for the Gurobi-Python API to offer bindings and namings for functions for the construction
and manipulation of MILPs and LPs in an vector-matrix-based manner that are consistent with those of the other
solver interfaces in the StrainDesign package. The purpose is to unify the instructions for operating with MILPs
and LPs throughout StrainDesign.

4.9. StrainDesign API 97

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

StrainDesign, Release 1.11

The Gurobi interface provides support for indicator constraints as well as for the populate function.

Accepts a (mixed integer) linear problem in the form:
minimize(c), subject to: A_ineq * x <= b_ineq, A_eq * x = b_eq, lb <= x <= ub, forall(i) type(x_i) =
vtype(i) (continous, binary, integer), indicator constraints: x(j) = [0|1] -> a_indic * x [<=|=|>=] b_indic

Please ensure that the number of variables and (in)equalities is consistent

Example

gurobi = Gurobi_MILP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype, indic_constr)

Parameters
• c (list of float) – (Default: None) The objective vector (Objective sense: minimiza-

tion).

• A_ineq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static inequal-
ities.

• b_ineq (list of float) – (Default: None) The right hand side of the static inequalities.

• A_eq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static equalities.

• b_eq (list of float) – (Default: None) The right hand side of the static equalities.

• lb (list of float) – (Default: None) The lower variable bounds.

• ub (list of float) – (Default: None) The upper variable bounds.

• vtype (str) – (Default: None) A character string that specifies the type of each variable:
‘c’ontinous, ‘b’inary or ‘i’nteger

• indic_constr (IndicatorConstraints) – (Default: None) A set of indicator constraints
stored in an object of IndicatorConstraints (see reference manual or docstring).

• Returns – (Gurobi_MILP_LP):

A Gurobi MILP/LP interface class.

add_eq_constraints(A_eq, b_eq)
Add equality constraints to the model

Additional equality constraints have the form A_eq * x = b_eq. The number of columns in A_eq must
match with the number of variables x in the problem.

Parameters
• A_eq (sparse.csr_matrix) – The coefficient matrix

• b_eq (list of float) – The right hand side vector

add_ineq_constraints(A_ineq, b_ineq)
Add inequality constraints to the model

Additional inequality constraints have the form A_ineq * x <= b_ineq. The number of columns in A_ineq
must match with the number of variables x in the problem.

Parameters
• A_ineq (sparse.csr_matrix) – The coefficient matrix

• b_ineq (list of float) – The right hand side vector

98 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

getSolution()→ list
Retrieve solution from Gurobi backend

getSolutions()→ list
Retrieve solution pool from Gurobi backend

populate(n)→ Tuple[List, float, float]
Generate a solution pool for MILPs

Example

sols_x, optim, status = cplex.populate()

Returns
(Tuple[List of lists, float, float])

solution_vectors, optimal_value, optimization_status

set_ineq_constraint(idx, a_ineq, b_ineq)
Replace a specific inequality constraint

Replace the constraint with the index idx with the constraint a_ineq*x ~ b_ineq

Parameters
• idx (int) – Index of the constraint

• a_ineq (list of float) – The coefficient vector

• b_ineq (float) – The right hand side value

set_objective(c)
Set the objective function with a vector

set_objective_idx(C)
Set the objective function with index-value pairs

e.g.: C=[[1, 1.0], [4,-0.2]]

set_time_limit(t)
Set the computation time limit (in seconds)

set_ub(ub)
Set the upper bounds to a given vector

slim_solve()→ float
Solve the MILP or LP, but return only the optimal value

Example

optim = gurobi.slim_solve()

Returns
(float)

Optimum value of the objective function.

solve()→ Tuple[List, float, float]
Solve the MILP or LP

4.9. StrainDesign API 99

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

Example

sol_x, optim, status = gurobi.solve()

Returns
(Tuple[List, float, float])

solution_vector, optimal_value, optimization_status

straindesign.indicatorConstraints

Class for indicator contraints (IndicatorConstraints)

Module Contents

class straindesign.indicatorConstraints.IndicatorConstraints(binv, A, b, sense, indicval)
A class for storing indicator contraints

This class is a container for indicator constraints. Indicator constraints are used to link the fulfillment of a
constraint to an indicating variable. For instance the indicator constraint: z = 1 -> 2*d - 1*e <= 3 can be described
as: If z=1, then 2*d - 1*e <= 3 An alternative formulation of this association is possible with a bigM constraint:
2*d - 1*e - z*M <= 3, with M = very large The constraint z = 0 -> 2*d - 1*e <= 3 would translate to 2*d - 1*e +
z*M <= 3 + M Generally, indicator constraints are preferred over bigM, because they provide better numerical
stability. However, not all solvers support indicator constraints

Indicator constraints have the form: x_binv = indicval -> a * x <sense> b e.g.,: x_35 = 1 -> 2 * x_2 + 3 *x_3 ‘L’
6

(<=)

This class contains a set of indicator constraints: x_binv_1 = indicval_1 -> A_1 * x <sense_1> b_1 x_binv_2 =
indicval_2 -> A_2 * x <sense_2> b_2 . . .

Example

ic = IndicatorConstraints(binv, A, b, sense, indicval)

Parameters
• binv (list of int) – (e.g.: [25, 27, 30]) The index of the binary, indicating variables

(indicators) for all indicator constraints. Integers are allowed ot occur more than once.

• A (sparse.csr_matrix) – Coefficient vectors for all indicator constraints, stored in one
matrix, whereas each row is used in one indicator constraint. (num_columns = number of
variables, num_rows = number of indicator constraints)

• b (list of float) – Right hand sides of all indicator constraints. (e.g.: [0.1, 2.0, 3])

• sense (str) – (In)equality signs for all indicator constraints. ‘L’ess or equal, ‘E’qual or,
‘G’reater or equal (e.g.: ‘EEGLGLGE’)

• indicval (list of int) – Indicator values for all indicator constraints. Which value of
the indicator enforces the constraint, 0 or 1? (e.g., 0001010110)

Returns
An object of the IndicatorConstraints class to pass indicator constraints.

100 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

StrainDesign, Release 1.11

Return type
(IndicatorConstraints)

straindesign.lptools

A collection of functions for the LP-based analysis of metabolic networks

Module Contents

straindesign.lptools.ceil_dec(v, n)
Round up v to n decimals

straindesign.lptools.fba(model, **kwargs)→ cobra.core.Solution
Flux Balance Analysis (FBA), parsimonius Flux Balance Analysis (pFBA),

Flux Balance Analysis optimizes a linear objective function in a space of steady-state flux vectors given by
a constraint-based metabolic model. FVA is often used to determine the (stoichiometrically) maximal possible
growth rate, or flux rate towards a particular product. This FBA function allows to us a custom objective function
and sense and allows the user to narrow down the flux states with additional constraints. In addition, one may
use different types of parsimonious FBAs to either reduce the total sum of fluxes or the total number of active
reactions after the primary objective is optimized.

Example

optim = fba(model, constraints=’EX_o2_e=0’, solver=’gurobi’, pfba=1)

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

If no custom objective function is provided, the model’s objective function is retrieved from
the fields model.reactions[i].objective_coefficient.

• solver (optional (str)) – The solver that should be used for FBA.

• constraints (optional (str) or (list of str) or (list of [dict,str,
float])) – (Default: ‘’) List of linear constraints to be applied on top of the model: signs
+ or -, scalar factors for reaction rates, inclusive (in)equalities and a float value on the
right hand side. The parsing of the constraints input allows for some flexibility. Correct
(and identical) inputs are, for instance: constraints=’-EX_o2_e <= 5, ATPM = 20’ or
constraints=[‘-EX_o2_e <= 5’, ‘ATPM = 20’] or constraints=[[{‘EX_o2_e’:-1},’<=’,5],
[{‘ATPM’:1},’=’,20]]

• obj (optional (str) or (dict)) – As a custom objective function, any linear ex-
pression can be used, either provided as a single string or as a dict. Correct (and
identical) inputs are, for instance: inner_objective=’BIOMASS_Ecoli_core_w_GAM’ in-
ner_objective={‘BIOMASS_Ecoli_core_w_GAM’: 1}

• obj_sense (optional (str)) – (Default: ‘maximize’) The optimization direction can be
set either to ‘maximize’ (or ‘max’) or ‘minimize’ (or ‘min’).

• pfba (optional (int)) – (Default: 0) The level of parsimonious FBA that should be
applied. 0: no pFBA, only optmize the primary objective, 1: minimize sum of fluxes after
the primary objective is optimized, 2: minimize the number of active reactions after the
primary objective is optimized.

4.9. StrainDesign API 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

StrainDesign, Release 1.11

Returns
A solution object that contains the objective value, an optimal flux vector and the optmization
status.

Return type
(cobra.core.Solution)

straindesign.lptools.floor_dec(v, n)
Round down v to n decimals

straindesign.lptools.fva(model, **kwargs)→ pandas.DataFrame
Flux Variability Analysis (FVA)

Flux Variability Analysis determines the global flux ranges of reactions by minimizing and maximizing the flux
through all reactions of a given metabolic network. This FVA function additionally allows the user to narrow
down the flux states with additional constraints.

Example

flux_ranges = fva(model, constraints=’EX_o2_e=0’, solver=’gurobi’)

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

• solver (optional (str)) – The solver that should be used for FVA.

• constraints (optional (str) or (list of str) or (list of [dict,str,
float])) – (Default: ‘’) List of linear constraints to be applied on top of the model: signs
+ or -, scalar factors for reaction rates, inclusive (in)equalities and a float value on the
right hand side. The parsing of the constraints input allows for some flexibility. Correct
(and identical) inputs are, for instance: constraints=’-EX_o2_e <= 5, ATPM = 20’ or
constraints=[‘-EX_o2_e <= 5’, ‘ATPM = 20’] or constraints=[[{‘EX_o2_e’:-1},’<=’,5],
[{‘ATPM’:1},’=’,20]]

Returns
A data frame containing the minimum and maximum attainable flux rates for all reactions.

Return type
(pandas.DataFrame)

straindesign.lptools.fva_worker_compute(i)→ Tuple[int, float]
Helper function for parallel FVA

Run a single LP as a step of FVA. Is executed on workers, not on main thread.

Parameters
i (int) – Index of the computation step.

straindesign.lptools.fva_worker_compute_glpk(i)→ Tuple[int, float]
Helper function for parallel FVA

Run a single LP for GLPK as a step of FVA. Is executed on workers, not on main thread.

Parameters
i (int) – Index of the computation step.

straindesign.lptools.fva_worker_init(A_ineq, b_ineq, A_eq, b_eq, lb, ub, solver)
Helper function for parallel FVA

Initialize the LP that will be solved iteratively. Is executed on workers, not on main thread.

102 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

StrainDesign, Release 1.11

Parameters
• A_ineq – The LP.

• b_ineq – The LP.

• A_eq – The LP.

• b_eq – The LP.

• lb – The LP.

• ub – The LP.

• solver (str) – Solver to be used.

straindesign.lptools.fva_worker_init_glpk(A_ineq, b_ineq, A_eq, b_eq, lb, ub)
Helper function for parallel FVA

Initialize the LP for GLPK that will be solved iteratively. Is executed on workers, not on main thread.

Parameters
• A_ineq – The LP.

• b_ineq – The LP.

• A_eq – The LP.

• b_eq – The LP.

• lb – The LP.

• ub – The LP.

straindesign.lptools.idx2c(i, prev)→ list
Helper function for parallel FVA

Builds the objective function for minimizing or maximizing the flux through the reaction with the index floor(i /
2). If i is even, there is a maximization.

Parameters
• i (float) – An index between 0 and 2*num_reacs.

• prev (optional (str)) – Index of the previously optimized reaction.

Returns
An optimization vector.

Return type
(list)

straindesign.lptools.plot_flux_space(model, axes, **kwargs)→ Tuple[list, list, list]
Plot projections of the space of steady-state flux vectors onto two or three dimensions.

This function uses LP and matplotlib to generate lower dimensional representations of the flux space. Cus-
tom linear or fractional-linear expressions can be used for the plot axis. The most commonly used flux space
reprentations are the production envelope that plots the growth rate (x) vs the product synthesis rate (y) and the
yield space plot that plots the biomass yield (x) vs the product yiel (y). One may specify additional constraints
to investigate subspaces of the metabolic steady-state flux space.

4.9. StrainDesign API 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

StrainDesign, Release 1.11

Example

plot_flux_space(model,(‘BIOMASS_Ecoli_core_w_GAM’,’EX_etoh_e’))

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

• axes ((list of lists) or (list of str)) – A set of linear expres-
sions that specify which reactions/expressions/dimensions should be used on
the axis. Examples: axes=[‘BIOMASS_Ecoli_core_w_GAM’,’EX_etoh_e’] or
axes=[[‘BIOMASS_Ecoli_core_w_GAM’,’-EX_glc_e’],[‘EX_etoh_e’,’-EX_glc_e’]] or
axes=[[‘BIOMASS_Ecoli_core_w_GAM’],[‘EX_etoh_e’,’-EX_glc_e’]]

• solver (optional (str)) – The solver that should be used for scanning the flux space.

• constraints (optional (str) or (list of str) or (list of [dict,str,
float])) – (Default: ‘’) List of linear constraints to be applied on top of the model: signs
+ or -, scalar factors for reaction rates, inclusive (in)equalities and a float value on the
right hand side. The parsing of the constraints input allows for some flexibility. Correct
(and identical) inputs are, for instance: constraints=’-EX_o2_e <= 5, ATPM = 20’ or
constraints=[‘-EX_o2_e <= 5’, ‘ATPM = 20’] or constraints=[[{‘EX_o2_e’:-1},’<=’,5],
[{‘ATPM’:1},’=’,20]]

• plt_backend (optional (str)) – The matplotlib backend that should be used for plot-
ting: interactive backends: GTK3Agg, GTK3Cairo, GTK4Agg, GTK4Cairo, MacOSX,
nbAgg, QtAgg, QtCairo,

TkAgg, TkCairo, WebAgg, WX, WXAgg, WXCairo, Qt5Agg, Qt5Cairo

non-interactive backends: agg, cairo, pdf, pgf, ps, svg, template

• show (optional (bool)) – (Default: True) Should matplotlib show the plot or should it
stop after plot generation. show=False can be useful if multiple flux spaces should be plotted
at once or the plot should be modified before been shown.

• points (optional (int)) – (Default: 25 (3D) or 40 (2D)) The number of intervals in
which the flux space should be sampled along each axis. A higher number will increase
resoltion but also computation time.

Returns
(datapoints, triang, plot1). The array of datapoints from which the plot was generated. These dat-
apoints are optimal values for different optimizations within the flux space. The triang variable
contains information about which datapoints need to be connected in triangles to render a con-
sistend 3-D surface with Delaunay triangles (Delaunay triangulation). The last variable contains
the matplotlib object.

Return type
(Tuple)

straindesign.lptools.select_solver(solver=None, model=None)→ str
Select a solver for subsequent MILP/LP computations

This function will determine the solver to be used for subsequend MILP/LP computations. If no argument is
provided, this function will try to determine the currently selected solver from the COBRA configuration. If
unavailable, the solver will be inferred from the packages available at package initialization and one of the solvers
will be picked and retured in the prioritized order: ‘glpk’, ‘cplex’, ‘gurobi’, ‘scip’ One may provide a solver or a
model manually. This function then checks if the selected solver is available, or else, if the solver indicated in the
model is available. If yes, this function returns the name of the solver as a str. If both arguments are specified,
the function prefers ‘solver’ over ‘model’.

104 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

StrainDesign, Release 1.11

Example

solver = select_solver(‘cplex’)

Parameters
• solver (optional (str)) – A user preferred solver, that should be checked for availabil-

ity: ‘glpk’, ‘cplex’, ‘gurobi’ or ‘scip’.

• model (optional (cobra.Model)) – A metabolic model that is an instance of the co-
bra.Model class. The function will try to dertermine the selected solver by accessing the
field model.solver.

Returns
The selected solver name as a str (one of the following: ‘glpk’, ‘cplex’, ‘gurobi’, ‘scip’).

Return type
(str)

straindesign.lptools.yopt(model, **kwargs)→ cobra.core.Solution
Yield optmization (YOpt)

Yield optimization optimizes a fractional objective function in a space of steady-state flux vectors given by a
constraint-based metabolic model. Yield optimization employs linear fractional programming, and is often uti-
lized to determine the (stoichiometrically) maximal possible product yield, that is, the fraction between the prod-
uct exchange and the substrate uptake flux. This function requires a custom fractional objective function specified
by a linear numerator and denominator terms. Coefficients in the linear numerator or denominator expression
can be used to optimize for carbon recovery, for instance: objective: (3*pyruvate_ex)/(2*ac_up+6*glc_up) The
user may also specify the optimization sense. In addition, additional constraints can be specified to narrow down
the flux space.

Yield optimization can fail because of several reasons. Here is how the function reacts:

1. The model is infeasible:
The function returns infeasible with no flux vector

2. The denominator is fixed to zero:
The function returns infeasible with no flux vector

3. The numerator is unbounded:
The function returns unbounded with no flux vector

4. The denominator can become zero:
The function returns unbounded, and a flux vector is computed by fixing the the denominator

Example

optim = yopt(model, obj_num=’2 EX_etoh_e’, obj_den=’-6 EX_glc__D_e’, constraints=’EX_o2_e=0’)

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

• obj_num ((str) or (dict)) – The numerator of the fractional objective function,
provided as a linear expression, either as a character string or as a dict. E.g.:
obj_num=’EX_prod_e’ or obj_num={‘EX_prod_e’: 1}

• obj_den ((str) or (dict)) – The denominator of the fractional objective function, pro-
vided as a linear expression, either as a character string or as a dict. E.g.: obj_num=’1.0
EX_subst_e’ or obj_num={‘EX_subst_e’: 1}

4.9. StrainDesign API 105

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

• obj_sense (optional (str)) – (Default: ‘maximize’) The optimization direction can be
set either to ‘maximize’ (or ‘max’) or ‘minimize’ (or ‘min’).

• solver (optional (str)) – The solver that should be used for YOpt.

• constraints (optional (str) or (list of str) or (list of [dict,str,
float])) – (Default: ‘’) List of linear constraints to be applied on top of the model: signs
+ or -, scalar factors for reaction rates, inclusive (in)equalities and a float value on the
right hand side. The parsing of the constraints input allows for some flexibility. Correct
(and identical) inputs are, for instance: constraints=’-EX_o2_e <= 5, ATPM = 20’ or
constraints=[‘-EX_o2_e <= 5’, ‘ATPM = 20’] or constraints=[[{‘EX_o2_e’:-1},’<=’,5],
[{‘ATPM’:1},’=’,20]]

Returns
A solution object that contains the objective value, an optimal flux vector and the optmization
status.

Return type
(cobra.core.Solution)

straindesign.names

Static strings used in the StrainDesign package

Model and module

MODEL_ID = ‘model_id’

PROTECT = ‘mcs_lin’

SUPPRESS = ‘mcs_bilvl’

SUPPRESS = ‘suppress’

PROTECT = ‘protect’

OPTKNOCK = ‘optknock’

ROBUSTKNOCK = ‘robustknock’

OPTCOUPLE = ‘optcouple’

MODULE_TYPE = ‘module_type’

CONSTRAINTS = ‘constraints’

INNER_OBJECTIVE = ‘inner_objective’

INNER_OPT_SENSE = ‘inner_opt_sense’

OUTER_OBJECTIVE = ‘outer_objective’

OUTER_OPT_SENSE = ‘outer_opt_sense’

PROD_ID = ‘prod_id’

MIN_GCP = ‘min_gcp’

Solvers and status codes

SOLVER = ‘solver’

CPLEX = ‘cplex’

GUROBI = ‘gurobi’

106 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

SCIP = ‘scip’

GLPK = ‘glpk’

OPTIMAL = ‘optimal’ # from optlang interface

INFEASIBLE =’infeasible’ # from optlang interface

TIME_LIMIT = ‘time_limit’ # from optlang interface

UNBOUNDED = ‘unbounded’ # from optlang interface

TIME_LIMIT_W_SOL = ‘time_limit_w_sols’

ERROR = ‘error’

Strain design setup

KOCOST = ‘ko_cost’

KICOST = ‘ki_cost’

GKOCOST = ‘gko_cost’

GKICOST = ‘gki_cost’

REGCOST = ‘reg_cost’

MODULES = ‘sd_modules’

SETUP = ‘sd_setup’

MAX_SOLUTIONS = ‘max_solutions’

MAX_COST = ‘max_cost’

T_LIMIT = ‘time_limit’

SOLUTION_APPROACH = ‘solution_approach’

ANY = ‘any’

BEST = ‘best’

POPULATE = ‘populate’

Analysis

MAXIMIZE = ‘maximize’

MINIMIZE = ‘minimize’

straindesign.networktools

Functions for metabolic network compression and extension with GPR rules

4.9. StrainDesign API 107

StrainDesign, Release 1.11

Module Contents

straindesign.networktools.bound_blocked_or_irrevers_fva(model, solver=None)
Use FVA to determine the flux ranges. Use this information to update the model bounds

If flux ranges for a reaction are narrower than its bounds in the mode, these bounds can be omitted, since other
reactions must constrain the reaction flux. If (upper or lower) flux bounds are found to be zero, the model bounds
are updated to reduce the model complexity.

straindesign.networktools.compress_ki_ko_cost(kocost, kicost, cmp_mapReac)
Compress knockout/addition cost vectors to match with a compressed model

When knockout/addition cost vectors have been specified (as dicts) and the original metabolic model was com-
pressed, one needs to update the knockout/addition cost vectors. This function takes care of this. In particular it
makes sure that the resulting costs are calculated correctly.

E.g.: r_ko_a (cost 1) and r_ko_b (cost 2) are lumped parallel: The resulting cost of r_ko_ab is 3 If they are
lumped as dependent reactions the resulting cost is 1. If one of the two reactions is an addition candidate, the
resulting reaction will be an addition candidate when lumped as dependent reactions and a knockout candidate
when lumped in parallel. There are various possible cases that are treated by this function.

Example

kocost, kicost, cmp_mapReac = compress_ki_ko_cost(kocost, kicost, cmp_mapReac)

Parameters
• kocost (dict) – Knockout and addition cost vectors

• kicost (dict) – Knockout and addition cost vectors

• cmp_mapReac (list of dicts) – Compression map obtained from cmp_mapReac = com-
press_model(model)

Returns
Updated vectors of KO costs and KI costs and an updated compression map that contains informa-
tion on how to expand strain designs and correctly distinguish between knockouts and additions.

Return type
(Tuple)

straindesign.networktools.compress_model(model, no_par_compress_reacs=set())
Compress a metabolic model with a number of different techniques

The network compression routine removes blocked reactions, removes conservation relations and then performs
alternatingly lumps dependent (compress_model_efmtool) and parallel (compress_model_parallel) reactions.
The compression returns a compressed network and a list of compression maps. Each map consists of a dictionary
that contains complete information for reversing the compression steps successively and expand information
obtained from the compressed model to the full model. Each entry of each map contains the id of a compressed
reaction, associated with the original reaction names and their factor (provided as a rational number) with which
they were lumped.

Furthermore, the user can select reactions that should be exempt from the parallel compression. This is a
critical feature for strain design computations. There is currently no way to exempt reactions from the efm-
tool/dependency compression.

108 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

StrainDesign, Release 1.11

Example

comression_map = compress_model(model,set(‘EX_etoh_e’,’PFL’))

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class

• no_par_compress_reacs (set or list of str) – (Default: set()) A set of reaction
identifiers whose reactions should not be lumped with other parallel reactions.

Returns
A list of compression maps. Each map is a dict that contains information for reversing the com-
pression steps successively and expand information obtained from the compressed model to the
full model. Each entry of each map contains the id of a compressed reaction, associated with
the original reaction identifiers and their factor with which they are represented in the lumped
reaction (provided as a rational number) with which they were lumped.

Return type
(list of dict)

straindesign.networktools.compress_model_efmtool(model)
Compress model by lumping dependent reactions using the efmtool compression approach

Example

cmp_mapReac = compress_model_efmtool(model)

Parameters
model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class

Returns
A dict that contains information about the lumping done in the compression process. process.
E.g.: {‘reaction_lumped1’ : {‘reaction_orig1’ : 2/3 ‘reaction_orig2’ : 1/2}, . . . }

Return type
(dict)

straindesign.networktools.compress_model_parallel(model, protected_rxns=set())
Compress model by lumping parallel reactions

Example

cmp_mapReac = compress_model_parallel(model)

Parameters
model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class

Returns
A dict that contains information about the lumping done in the compression process. E.g.: {‘re-
action_lumped1’ : {‘reaction_orig1’ : 1 ‘reaction_orig2’ : 1}, . . . }

Return type
(dict)

4.9. StrainDesign API 109

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

straindesign.networktools.compress_modules(sd_modules, cmp_mapReac)
Compress strain design modules to match with a compressed model

When a strain design task has been specified with modules and the original metabolic model was compressed,
one needs to refit the strain design modules (objects of the SDModule class) to the new compressed model. This
function takes a list of modules and a compression map and returns the strain design modules for a compressed
network.

Example

comression_map = compress_modules(sd_modules, cmp_mapReac)

Parameters
• model (list of SDModule) – A list of strain design modules

• cmp_mapReac (list of dicts) – Compression map obtained from cmp_mapReac = com-
press_model(model)

Returns
A list of strain design modules for the compressed network

Return type
(list of SDModule)

straindesign.networktools.expand_sd(sd, cmp_mapReac)
Expand computed strain designs from a compressed to a full model

Needed after computing strain designs in a compressed model

Example

expanded_sd = expand_sd(compressed_sds, cmp_mapReac)

Parameters
• sd (SDSolutions) – Solutions of a strain design computation that refer to a compressed

model

• cmp_mapReac (list of dicts) – Compression map obtained from cmp_mapReac
= compress_model(model) and updated with kocost, kicost, cmp_mapReac = com-
press_ki_ko_cost(kocost, kicost, cmp_mapReac)

Returns
Strain design solutions that refer to the uncompressed model

Return type
(SDSolutions)

straindesign.networktools.extend_model_gpr(model, use_names=False)
Integrate GPR-rules into a metabolic model as pseudo metabolites and reactions

COBRA modules often have gene-protein-reaction (GPR) rules associated with each reaction. These can be inte-
grated into the metabolic network structure through pseudo reactions and variables. As GPR rules are integrated
into the metabolic network, the metabolic flux space does not change. After integration, the gene-pseudoreactions
can be fixed to a flux of zero to simulate gene knockouts. Gene pseudoreactions are referenced either by the gene
name or the gene identifier (user selected).

GPR-rule integration enables the computation of strain designs based on genetic interventions.

110 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

StrainDesign, Release 1.11

This function requires all GPR-rules to be provided in DNF (disjunctive normal form). (e.g. g1 and g2 or g1
and g3, NOT g1 and (g2 or g3)). Brackets are allowed but not required. If reversible reactions are associated
with GPR-rules, these reactions are spit during GPR-integration. The function returns a mapping of old and new
reaction identifiers.

Example

reac_map = extend_model_gpr(model):

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class

containing GPR rules in DNF

• use_names (bool) – (Default: False) If set to True, the gene pseudoreactions will carry the
gene name as reaction identifier. If False, the gene identifier will be used. By default this
option is turned off because many models do not provide gene names.

Returns
A dictionary to reference old and new reaction identifiers, for reversible reactions that were split
(when they are associated with GPR rules). Entries have the form: {‘Reaction1’ : {‘Reaction1’
: 1, ‘Reaction1_reverse_a59c’ : -1}}

Return type
(dict)

straindesign.networktools.extend_model_regulatory(model, reg_itv)
Extend a metabolic model to account for regulatory constraints

This function emulates regulatory interventions in a network. These can either be added permanently or linked
to a pseudoreation whose boundaries can be fixed to zero used to activate the regulatory constraint.

Accounting for regulatory interventions, such as applying an upper or lower bound to a reaction or gene pseu-
doreaction, can be achieved by combining different pseudometabolites and reactions. For instance, to introduce
the regulatory constraint:

2*r_1 + 3*r_2 <= 4

and make it ‘toggleable’, one adds 1 metabolite ‘m’ and 2 reactions, ‘r_bnd’ to account for the bound/rhs and
r_ctl to control whether the regulatory intervention is active or not:

dm/dt = 2*r_1 + 3*r_2 - r_bnd + r_ctl = 0, -inf <= r_bnd <= 4, -inf <= r_ctl <= inf

When r_ctl is fixed to zero, the constraint 2*r_1 + 3*r_2 <= 4 is enforced, otherwise, the constraint is non binding,
thus virtually non-existant. To use this mechanism for strain design, we add the metabolite and reactions as
described above and tag r_ctl as knockout candidate. If the algorithm decides to knockout r_ctl, this means, it
choses to add the regulatory intervention 2*r_1 + 3*r_2 <= 4.

If the constraint is be added permanently, this function completely omits the r_ctl reaction.

4.9. StrainDesign API 111

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

Example

reg_itv_costs = extend_model_regulatory(model, {‘1 PDH + 1 PFL <= 5’ : 1, ‘-EX_o2_e <= 2’ : 1.5})

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class

• reg_itv (dict or list of str or str) – A set of regulatory constraints that should
be added to the model. If reg_itv is a string or a list of strings, regulatory constraints are
added permanently. If reg_itv is a dict, regulatory interventions are added in a controllable
manner. The id of the reaction that controls the constraint is contained in the return variable.
The constraint to be added will be parsed from strings, so ensure that you use the correct
reaction identifiers. Valid inputs are: reg_itv = ‘-EX_o2_e <= 2’ # A single permanent reg-
ulatory constraint reg_itv = [‘1 PDH + 1 PFL <= 5’, ‘-EX_o2_e <= 2’] # Two permanent
constraints reg_itv = {‘1 PDH + 1 PFL <= 5’ : 1, ‘-EX_o2_e <= 2’ : 1.5} # Two control-
lable constraints # one costs ‘1’ and the other one ‘1.5’ to be added. The function returns
a dict with # {‘p1_PDH_p1_PFK_le_5’ : 1 ‘nEX_o2_e_le_2’ : 1.5}. Fixing the reaction #
p1_PDH_p1_PFK_le_5 to zero will activate the constraint in the model.

Returns
A dictionary that contains the cost of adding each constraint; e.g., {‘p1_PDH_p1_PFK_le_5’ :
1 ‘n1EX_o2_e_le_2’ : 1.5}

Return type
(dict)

straindesign.networktools.filter_sd_maxcost(sd, max_cost, kocost, kicost)
Filter out strain designs that exceed the maximum allowed intervention costs

Returns
Strain design solutions complying with the intervention costs limit

Return type
(SDSolutions)

straindesign.networktools.modules_coeff2float(sd_modules)
Convert coefficients occurring in SDModule objects to floats

straindesign.networktools.modules_coeff2rational(sd_modules)
Convert coefficients occurring in SDModule objects to rational numbers

straindesign.networktools.remove_blocked_reactions(model)→ List
Remove blocked reactions from a network

straindesign.networktools.remove_conservation_relations(model)
Remove conservation relations in a model

This reduces the number of metabolites in a model while maintaining the original flux space. This is a compres-
sion technique.

straindesign.networktools.remove_dummy_bounds(model)
Replace COBRA standard bounds with +/-inf

Retrieve the standard bounds from the COBRApy Configuration and replace model bounds of the same value
with +/-inf.

straindesign.networktools.remove_ext_mets(model)
Remove (unbalanced) external metabolites from the compartment External_Species

112 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

straindesign.networktools.remove_irrelevant_genes(model, essential_reacs, gkis, gkos)
Remove genes whose that do not affect the flux space of the model

This function is used in preprocessing of computational strain design computations. Often, certain reactions,
for instance, reactions essential for microbial growth can/must not be targeted by interventions. That can be
exploited to reduce the set of genes in which interventions need to be considered.

Given a set of essential reactions that is to be maintained operational, some genes can be removed from a
metabolic model, either because they only affect only blocked reactions or essential reactions, or because they
are essential reactions and must not be removed. As a consequence, the GPR rules of a model can be simplified.

Example

remove_irrelevant_genes(model, essential_reacs, gkis, gkos):

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class

containing GPR rules

• essential_reacs (list of str) – A list of identifiers of essential reactions.

• gkis (dict) – Dictionaries that contain the costs for gene knockouts and additions. E.g.,
gkos={‘adhE’: 1.0, ‘ldhA’ : 1.0 . . . }

• gkos (dict) – Dictionaries that contain the costs for gene knockouts and additions. E.g.,
gkos={‘adhE’: 1.0, ‘ldhA’ : 1.0 . . . }

Returns
An updated dictionary of the knockout costs in which irrelevant genes are removed.

Return type
(dict)

straindesign.networktools.stoichmat_coeff2float(model)
Convert coefficients from to stoichiometric matrix to floats

straindesign.networktools.stoichmat_coeff2rational(model)
Convert coefficients from to stoichiometric matrix to rational numbers

straindesign.parse_constr

Functions for parsing and converting constraints and linear expressions

Module Contents

straindesign.parse_constr.get_rids(expr, reaction_ids)
Get reaction identifiers that are present in string

E.g.: input: D={‘R1’:-1.0, ‘R3’: 2.0}, translates to the string: ‘- 1.0 R1 + 2.0 R3’

Parameters
• expr (str) – A character string

• reaction_ids (list of str) – List of reaction identifiers or variable names

4.9. StrainDesign API 113

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

StrainDesign, Release 1.11

Returns
A list of strings containing the reaction/variable strings present in the input string

Return type
(list of str)

straindesign.parse_constr.lineq2list(equations, reaction_ids)→ List
Translates linear (in)equalities to list format: [lhs,sign,rhs]

Input inequalities in the form of strings are translated into a specific list format that facilitates the readout of
left-hand-side, equality sign and right-hand-side of the inequality.

equations = [‘2*c - b +3*a <= 2’,’c - b = 0’,’2*b -5. . .], reaction_ids = [‘a’,’b’,’c’]

This will be translated to the [[{‘a’:3.0,’b’:-1.0,’c’:2.0},’<=’,2.0],[{‘b’:-1.0,’c’:1.0},’=’,0.0], . . .]

Parameters
• equations (list of str) – (List of) (in)equalities in string form equations=[‘r1 + 3*r2

= 0.3’, ‘-5*r3 -r4 <= -0.5’]

• reaction_ids (list of str) – List of reaction identifiers or variable names that are used
to recognize variables in the provided (in)equalities

Returns
(In)equalities presented in the form: [[{‘a’:3.0,’b’:-1.0,’c’:2.0},’<=’,2.0], # e1

[{‘b’:-1.0,’c’:1.0},’=’,0.0], # e2 . . .] # . . .

Return type
(list of lists)

straindesign.parse_constr.lineq2mat(equations, reaction_ids)→ Tuple[scipy.sparse.csr_matrix, Tuple,
scipy.sparse.csr_matrix, Tuple]

Translates linear (in)equalities to matrices

Input inequalities in the form of strings is translated into matrices and vectors. The reaction list defines the order
of variables and thus the columns of the resulting matrices, the order of (in)equalities will be preserved in the
output matrices. As an example, take the input:

equations = [‘2*c - b +3*a <= 2’,’c - b = 0’,’2*b -a >=-2’], reaction_ids = [‘a’,’b’,’c’]

This will be translated to the form A_ineq * x <= b_ineq, A_eq * x = b_eq and hence to

A_ineq = sparse.csr_matrix([[3,-1,2],[1,-2,0]]), b_ineq = [2,2], A_eq = sparse.csr_matrix([[1,-2,0]]), b_eq = [0]

Parameters
• equations (list of str) – (List of) (in)equalities in string form equations=[‘r1 + 3*r2

= 0.3’, ‘-5*r3 -r4 <= -0.5’]

• reaction_ids (list of str) – List of reaction identifiers or variable names that are used
to recognize variables in the provided (in)equalities

Returns
A_ineq, b_ineq, A_eq, b_eq. Coefficient matrices and right hand sides that represent the input
(in)equalities as matrix-vector multiplications

Return type
(Tuple)

114 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

StrainDesign, Release 1.11

straindesign.parse_constr.lineqlist2mat(D, reaction_ids)→ Tuple[scipy.sparse.csr_matrix, Tuple,
scipy.sparse.csr_matrix, Tuple]

Translates linear (in)equalities presented in the list of lists format to matrices

Input inequalities in the list of lists form is translated into matrices and vectors. The reaction list defines the order
of variables and thus the columns of the resulting matrices, the order of (in)equalities will be preserved in the
output matrices. As an example, take the input:

D = [[{‘a’:3.0,’b’:-1.0,’c’:2.0},’<=’,2.0],[{‘b’:-1.0,’c’:1.0},’=’,0.0], [{‘a’:-1,’b’:2.0},’>=’,-2.0]]

This will be translated to the form A_ineq * x <= b_ineq, A_eq * x = b_eq and hence to

A_ineq = sparse.csr_matrix([[3,-1,2],[1,-2,0]]), b_ineq = [2,2], A_eq = sparse.csr_matrix([[1,-2,0]]), b_eq = [0]

Parameters
• D (list of dict) – (List of) (in)equalities in the list of list form: [[{‘a’:3.0,’b’:-

1.0,’c’:2.0},’<=’,2.0],[{‘b’:-1.0,’c’:1.0},’=’,0.0], . . .]

• reaction_ids (list of str) – List of reaction identifiers or variable names that are used
to recognize variables in the provided (in)equalities

Returns
A_ineq, b_ineq, A_eq, b_eq. Coefficient matrices and right hand sides that represent the input
(in)equalities as matrix-vector multiplications

Return type
(Tuple)

straindesign.parse_constr.lineqlist2str(D)

Translates a linear (in)equality from the list format [lhs,sign,rhs] to a string

E.g. input: D=[{‘a’:3.0,’b’:-1.0,’c’:2.0},’<=’,2.0]] is translated to: out=’3.0 a - 1.0 b + 2.0 c <= 2’

Parameters
D (list) – (In)equality in list form, e.g.: D=[{‘a’:3.0,’b’:-1.0,’c’:2.0},’<=’,2.0]]

Returns
A list of (in)equalities in string form

Return type
(str)

straindesign.parse_constr.linexpr2dict(expr, reaction_ids)→ dict
Translates a linear expression into a dictionary

E.g.: input: expr=’2 R3 - R1’, reaction_ids=[‘R1’, ‘R2’, ‘R3’, ‘R4’] translates to a dict D={‘R1’:-1.0, ‘R3’: 2.0}

Parameters
• expr (str) – (In)equalities as a character string, e.g.: expr=’2 R3 - R1’

• reaction_ids (list of str) – List of reaction identifiers or variable names that are used
to recognize variables in the input

Returns
A dictionary that contains the variable names and the variable coefficients in the linear expression

Return type
(dict)

4.9. StrainDesign API 115

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

straindesign.parse_constr.linexpr2mat(expr, reaction_ids)→ scipy.sparse.csr_matrix
Translates a linear expression into a vector

E.g.: input: expr=’2 R3 - R1’, reaction_ids=[‘R1’, ‘R2’, ‘R3’, ‘R4’] translates into sparse matrix: A = [-1 0 2 0]

Parameters
• expr (str) – (In)equality as a character string: e.g., expr=’2 R3 - R1’

• reaction_ids (list of str) – List of reaction identifiers or variable names that are used
to recognize variables in the input

Returns
A single-row coefficient matrix that represents the input expression when multiplied with the
variable vector

Return type
(sparse.csr_matrix)

straindesign.parse_constr.linexprdict2mat(D, reaction_ids)→ scipy.sparse.csr_matrix
Translates a linear expression from dict into a matrix

E.g.: input: D={‘R1’:-1.0, ‘R3’: 2.0}, reaction_ids=[‘R1’, ‘R2’, ‘R3’, ‘R4’] translates into sparse matrix: A =
[-1 0 2 0]

Parameters
• D (dict) – Linear expression as a dictionary

• reaction_ids (list of str) – List of reaction identifiers or variable names

Returns
A single-row coefficient matrix that represents the input expression when multiplied with the
variable vector

Return type
(sparse.csr_matrix)

straindesign.parse_constr.linexprdict2str(D)

Translates a linear expression from dict into a caracter string

E.g.: input: D={‘R1’:-1.0, ‘R3’: 2.0}, translates to the string: ‘- 1.0 R1 + 2.0 R3’

Parameters
D (dict) – Linear expression as a dictionary

Returns
The input linear expression as a character string

Return type
(str)

straindesign.parse_constr.parse_constraints(constr, reaction_ids)→ list
Parses linear constraints written as strings

Parses one or more linear constraints written as strings.

Parameters
• constr (str or list of str) – (List of) constraints in string form. E.g.: [‘r1 + 3*r2 =

0.3’, ‘-5*r3 -r4 <= -0.5’] or ‘1.0 r1 + 3.0*r2 =0.3,-r4-5*r3<=-0.5’ or . . .

• reaction_ids (list of str) – List of reaction identifiers.

116 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

StrainDesign, Release 1.11

Returns
List of constraints. Each constraint is a list of three elements. E.g.:
[[{‘r1’:1.0,’r2’:3.0},’=’,0.3],[{‘r3’:-5.0,’r4’:-1.0},’<=’,-0.5],. . .]

Return type
(List of dicts)

straindesign.parse_constr.parse_linexpr(expr, reaction_ids)→ List
Parses linear expressions written as strings

Parses one or more linear expressions written as strings.

Parameters
• expr (str or list of str) – (List of) expressions in string form. E.g.: [‘r1 + 3*r2’,

‘-5*r3 -r4’] or ‘1.0 r1 + 3.0*r2,-r4-5*r3’ or . . .

• reaction_ids (list of str) – List of reaction identifiers.

Returns
List of expressions. Each expression is a dictionary. E.g.: [{‘r1’:1.0,’r2’:3.0},{‘r3’:-5.0,’r4’:-
1.0},. . .]

Return type
(List of dicts)

straindesign.pool

Provide a process pool with enhanced performance on Windows, copied and slightly adapted from cobra.

Module Contents

class straindesign.pool.SDPool(processes: int | None = None, initializer: Callable | None = None, initargs:
Tuple = (), maxtasksperchild: int | None = None, context=None)

Bases: multiprocessing.pool.Pool

Multiprocessing process pool with enhanced Windows compatibility

Initialize a process pool.

Add a thin layer on top of the multiprocessing.Pool that, on Windows, passes initialization code to workers via
a pickle file rather than directly. This is done to avoid a performance issue that exists on Windows. Please, also
see the discussion [1].

References

__exit__(*args, **kwargs)
Clean up resources when leaving a context

close()

Call cleanup function and close

4.9. StrainDesign API 117

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool

StrainDesign, Release 1.11

straindesign.scip_interface

SCIP and SoPlex solver interface for LP and MILP

Module Contents

class straindesign.scip_interface.SCIP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub)
Bases: pyscipopt.LP

SoPlex interface for LP

This class is a wrapper for the SoPlex-Python API to offer bindings and namings for functions for the construction
and manipulation of LPs in an vector-matrix-based manner that are consistent with those of the other solver
interfaces in the StrainDesign package. The purpose is to unify the instructions for operating with MILPs and
LPs throughout StrainDesign.

Constructor of the SCIP (SoPlex) LP interface class

Accepts a (mixed integer) linear problem in the form:
minimize(c) subject to: A_ineq * x <= b_ineq

A_eq * x = b_eq lb <= x <= ub forall(i) type(x_i) = vtype(i) (continous, binary, integer) indicator
constraints: x(j) = [0|1] -> a_indic * x [<=|=|>=] b_indic

Please ensure that the number of variables and (in)equalities is consistent

Example

scip = SCIP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub)

Parameters
• c (list of float) – (Default: None) The objective vector (Objective sense: minimiza-

tion).

• A_ineq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static inequal-
ities.

• b_ineq (list of float) – (Default: None) The right hand side of the static inequalities.

• A_eq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static equalities.

• b_eq (list of float) – (Default: None) The right hand side of the static equalities.

• lb (list of float) – (Default: None) The lower variable bounds.

• ub (list of float) – (Default: None) The upper variable bounds.

• Returns – (SCIP_LP):

A SCIP LP interface class.

add_eq_constraints(A_eq, b_eq)
Add equality constraints to the model

Additional equality constraints have the form A_eq * x = b_eq. The number of columns in A_eq must
match with the number of variables x in the problem.

Parameters
• A_eq (sparse.csr_matrix) – The coefficient matrix

118 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

• b_eq (list of float) – The right hand side vector

add_ineq_constraints(A_ineq, b_ineq)
Add inequality constraints to the model

Additional inequality constraints have the form A_ineq * x <= b_ineq. The number of columns in A_ineq
must match with the number of variables x in the problem.

Parameters
• A_ineq (sparse.csr_matrix) – The coefficient matrix

• b_ineq (list of float) – The right hand side vector

set_objective(c)
Set the objective function with a vector

set_objective_idx(C)
Set the objective function with index-value pairs

e.g.: C=[[1, 1.0], [4,-0.2]]

slim_solve()→ float
Solve the LP, but return only the optimal value

Example

optim = scip.slim_solve()

Returns
(float)

Optimum value of the objective function.

solve()→ Tuple[List, float, float]
Solve the LP

Example

sol_x, optim, status = scip.solve()

Returns
(Tuple[List, float, float])

solution_vector, optimal_value, optimization_status

class straindesign.scip_interface.SCIP_MILP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype, indic_constr)
Bases: pyscipopt.Model

SCIP interface for MILP

This class is a wrapper for the SCIP-Python API to offer bindings and namings for functions for the construction
and manipulation of MILPs in an vector-matrix-based manner that are consistent with those of the other solver
interfaces in the StrainDesign package. The purpose is to unify the instructions for operating with MILPs and
LPs throughout StrainDesign.

The SCIP interface provides support for indicator constraints as well as for the populate function. The SCIP
interface does not natively support the populate function. A high level implementation emulates the behavior of
populate.

4.9. StrainDesign API 119

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

Accepts a (mixed integer) linear problem in the form:
minimize(c), subject to: A_ineq * x <= b_ineq, A_eq * x = b_eq, lb <= x <= ub, forall(i) type(x_i) =
vtype(i) (continous, binary, integer), indicator constraints: x(j) = [0|1] -> a_indic * x [<=|=|>=] b_indic

Please ensure that the number of variables and (in)equalities is consistent

Example

scip = SCIP_MILP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype, indic_constr)

Parameters
• c (list of float) – (Default: None) The objective vector (Objective sense: minimiza-

tion).

• A_ineq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static inequal-
ities.

• b_ineq (list of float) – (Default: None) The right hand side of the static inequalities.

• A_eq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static equalities.

• b_eq (list of float) – (Default: None) The right hand side of the static equalities.

• lb (list of float) – (Default: None) The lower variable bounds.

• ub (list of float) – (Default: None) The upper variable bounds.

• vtype (str) – (Default: None) A character string that specifies the type of each variable:
‘c’ontinous, ‘b’inary or ‘i’nteger

• indic_constr (IndicatorConstraints) – (Default: None) A set of indicator constraints
stored in an object of IndicatorConstraints (see reference manual or docstring).

• Returns – (SCIP_MILP):

A SCIP MILP interface class.

addExclusionConstraintIneq(x)
Function to add exclusion constraint (SCIP compatibility function)

add_eq_constraints(A_eq, b_eq)
Add equality constraints to the model

Additional equality constraints have the form A_eq * x = b_eq. The number of columns in A_eq must
match with the number of variables x in the problem.

Parameters
• A_eq (sparse.csr_matrix) – The coefficient matrix

• b_eq (list of float) – The right hand side vector

add_ineq_constraints(A_ineq, b_ineq)
Add inequality constraints to the model

Additional inequality constraints have the form A_ineq * x <= b_ineq. The number of columns in A_ineq
must match with the number of variables x in the problem.

Parameters
• A_ineq (sparse.csr_matrix) – The coefficient matrix

• b_ineq (list of float) – The right hand side vector

120 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

getSolution()→ list
Retrieve solution from SCIP backend

set_ineq_constraint(idx, a_ineq, b_ineq)
Replace a specific inequality constraint

Replace the constraint with the index idx with the constraint a_ineq*x ~ b_ineq

Parameters
• idx (int) – Index of the constraint

• a_ineq (list of float) – The coefficient vector

• b_ineq (float) – The right hand side value

set_objective(c)
Set the objective function with a vector

set_objective_idx(C)
Set the objective function with index-value pairs

e.g.: C=[[1, 1.0], [4,-0.2]]

set_time_limit(t)
Set the computation time limit (in seconds)

set_ub(ub)
Set the upper bounds to a given vector

slim_solve()→ float
Solve the MILP, but return only the optimal value

Example

optim = scip.slim_solve()

Returns
(float)

Optimum value of the objective function.

solve()→ Tuple[List, float, float]
Solve the MILP

Example

sol_x, optim, status = scip.solve()

Returns
(Tuple[List, float, float])

solution_vector, optimal_value, optimization_status

4.9. StrainDesign API 121

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

straindesign.solver_interface

Unified solver interface for LPs and MILPs (MILP_LP)

Module Contents

class straindesign.solver_interface.MILP_LP(**kwargs)
Bases: object

Unified MILP and LP interface

This class is a wrapper for several solver interfaces to offer unique and consistent bindings for the construction
and manipulation of MILPs and LPs in an vector-matrix-based manner and their solution.

Accepts a (mixed integer) linear problem in the form:
minimize(c), subject to: A_ineq * x <= b_ineq, A_eq * x = b_eq, lb <= x <= ub, forall(i) type(x_i) =
vtype(i) (continous, binary, integer), indicator constraints: x(j) = [0|1] -> a_indic * x [<=|=|>=] b_indic

Please ensure that the number of variables and (in)equalities is consistent

Example

milp = MILP_LP(c, A_ineq, b_ineq, A_eq, b_eq, lb, ub, vtype, indic_constr)

Parameters
• c (list of float) – (Default: None) The objective vector (Objective sense: minimiza-

tion).

• A_ineq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static inequal-
ities.

• b_ineq (list of float) – (Default: None) The right hand side of the static inequalities.

• A_eq (sparse.csr_matrix) – (Default: None) A coefficient matrix of the static equalities.

• b_eq (list of float) – (Default: None) The right hand side of the static equalities.

• lb (list of float) – (Default: None) The lower variable bounds.

• ub (list of float) – (Default: None) The upper variable bounds.

• vtype (str) – (Default: None) A character string that specifies the type of each variable:
‘c’ontinous, ‘b’inary or ‘i’nteger

• indic_constr (IndicatorConstraints) – (Default: None) A set of indicator constraints
stored in an object of IndicatorConstraints (see reference manual or docstring).

• M (int) – (Default: None) A large value that is used in the translation of indicator constraints
to bigM-constraints for solvers that do not natively support them. If no value is provided,
1000 is used.

• solver (str) – (Default: taken from avail_solvers) Solver backend that should be used:
‘cplex’, ‘gurobi’, ‘glpk’ or ‘scip’

• skip_checks (bool) – (Default: False) Upon MILP construction, the dimensions of all
provided vectors and matrices are checked to verify their consistency. If skip_checks=True
is set, these checks are skipped.

• tlim (float) – Solution time limit in seconds.

122 Chapter 4. How to cite:

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

• Returns – (MILP_LP):

A MILP/LP solver interface class.

add_eq_constraints(A_eq, b_eq)
Add equality constraints to the model

Additional equality constraints have the form A_eq * x = b_eq. The number of columns in A_eq must
match with the number of variables x in the problem.

Parameters
• A_eq (sparse.csr_matrix) – The coefficient matrix

• b_eq (list of float) – The right hand side vector

add_ineq_constraints(A_ineq, b_ineq)
Add inequality constraints to the model

Additional inequality constraints have the form A_ineq * x <= b_ineq. The number of columns in A_ineq
must match with the number of variables x in the problem.

Parameters
• A_ineq (sparse.csr_matrix) – The coefficient matrix

• b_ineq (list of float) – The right hand side vector

clear_objective()

Clear objective

Set all coefficients in the objective vector to 0.

populate(n)→ Tuple[List, float, float]
Generate a solution pool for MILPs

Example

sols_x, optim, status = cplex.populate()

Returns
(Tuple[List of lists, float, float])

solution_vectors, optimal_value, optimization_status

set_ineq_constraint(idx, a_ineq, b_ineq)
Replace a specific inequality constraint

Replace the constraint with the index idx with the constraint a_ineq*x ~ b_ineq

Parameters
• idx (int) – Index of the constraint

• a_ineq (list of float) – The coefficient vector

• b_ineq (float) – The right hand side value

set_objective(c)
Set the objective function with a vector

4.9. StrainDesign API 123

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

set_objective_idx(C)
Set the objective function with index-value pairs

e.g.: C=[[1, 1.0], [4,-0.2]]

set_time_limit(t)
Set the computation time limit (in seconds)

set_ub(ub)
Set the upper bounds to a given vector

slim_solve()→ float
Solve the MILP or LP, but return only the optimal value

Example

optim = cplex.slim_solve()

Returns
(float)

Optimum value of the objective function.

solve()→ Tuple[List, float, float]
Solve the MILP or LP

Example

sol_x, optim, status = milp.solve()

Returns
(Tuple[List, float, float])

solution_vector, optimal_value, optimization_status

straindesign.strainDesignMILP

Classes and function for the solution of strain design MILPs

Module Contents

class straindesign.strainDesignMILP.SDMILP(model: straindesign.Model, sd_modules:
List[straindesign.SDModule], **kwargs)

Bases: straindesign.SDProblem, straindesign.MILP_LP

Class that contains functions for the solution of the strain design MILP

This class is a wrapper and inherited from the casses SDProblem, MILP_LP. The constructor of SDProb-
lem (see strainDesignProblem.py) translates a given problem into a MILP. The constructor of MILP_LP (see
solver_interface.py) then sets up the solver interface for the selected solver. In addition to the functions from
SDProblem and MILP_LP, SDMILP provides functions for the solution of the strain design MILP, such as veri-
fication of strain design solutions or introduction of exclusion constraints for computing multiple solutions.

Parameters

124 Chapter 4. How to cite:

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

• sd_modules ((list of) straindesign.SDModule) – Modules that specify the strain
design problem, e.g., protected or suppressed flux states for MCS strain design or inner and
outer objective functions for OptKnock. See description of SDModule for more information
on how to set up modules.

• ko_cost (optional (dict)) – (Default: None) A dictionary of reaction identifiers and
their associated knockout costs. If not specified, all reactions are treated as knockout can-
didates, equivalent to ko_cost = {‘r1’:1, ‘r2’:1, . . . }. If a subset of reactions is listed in the
dict, all other are not considered as knockout candidates.

• ki_cost (optional (dict)) – (Default: None) A dictionary of reaction identifiers and
their associated costs for addition. If not specified, all reactions are treated as knockout can-
didates. Reaction addition candidates must be present in the original model with the intended
flux boundaries after insertion. Additions are treated adversely to knockouts, meaning that
their exclusion from the network is not associated with any cost while their presence entails
intervention costs.

• max_cost (optional (int)) – (Default: inf): The maximum cost threshold for interven-
tions. Every possible intervention is associated with a cost value (1, by default). Strain
designs cannot exceed the max_cost threshold. Individual intervention cost factors may be
defined through ki_cost and ko_cost.

• solver (optional (str)) – (Default: same as defined in model / COBRApy) The solver
that should be used for preparing and carrying out the strain design computation. Allowed
values are ‘cplex’, ‘gurobi’, ‘scip’ and ‘glpk’.

• M (optional (int)) – (Default: None) If this value is specified (and non-zero, not None),
the computation uses the big-M method instead of indicator constraints. Since GLPK does
not support indicator constraints it uses the big-M method by default (with COBRA stan-
dard M=1000). M should be chosen ‘sufficiently large’ to avoid computational artifacts and
‘sufficiently small’ to avoid numerical issues.

• essential_kis (optional (set)) – A set of reactions that are marked as addable and
that are essential for at least one of the strain design modules. Providing such “essential
knock-ins” may speed up the strain design computation.

Returns
An instance of SDProblem containing the strain design MILP and providing several functions
for its solution

Return type
(SDMILP)

add_exclusion_constraints(z)
Exclude binary solution in z and all supersets from MILP

add_exclusion_constraints_ineq(z)
Exclude binary solution in z (but not its supersets) from MILP

build_sd_solution(sd_dict, status, solution_approach)
Build the strain design solution object

compute(**kwargs)
Compute arbitrary solutions of the strain design MILP and iteratively find further solutions

Parameters
• max_solutions (optional (int)) – (Default: inf) The maximum number of MILP

solutions that are generated for a strain design problem.

4.9. StrainDesign API 125

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int

StrainDesign, Release 1.11

• time_limit (optional (int)) – (Default: inf) The time limit in seconds for the MILP-
solver.

• show_no_ki (optional (bool)) – (Default: True) Indicate non-added addition candi-
dates in a solution specifically with a value of 0

Returns
Strain design solutions provided as an SDSolutions object

Return type
(SDSolutions)

compute_optimal(**kwargs)
Compute the global optimum of the strain design MILP and iteratively find the next best solution

Parameters
• max_solutions (optional (int)) – (Default: inf) The maximum number of MILP

solutions that are generated for a strain design problem.

• time_limit (optional (int)) – (Default: inf) The time limit in seconds for the MILP-
solver.

• show_no_ki (optional (bool)) – (Default: True) Indicate non-added addition candi-
dates in a solution specifically with a value of 0

Returns
Strain design solutions provided as an SDSolutions object

Return type
(SDSolutions)

enumerate(**kwargs)
Find all globally optimal solutions to the strain design MILP and iteratively construct pools for the subop-
timal values

Parameters
• max_solutions (optional (int)) – (Default: inf) The maximum number of MILP

solutions that are generated for a strain design problem.

• time_limit (optional (int)) – (Default: inf) The time limit in seconds for the MILP-
solver.

• show_no_ki (optional (bool)) – (Default: True) Indicate non-added addition candi-
dates in a solution specifically with a value of 0

Returns
Strain design solutions provided as an SDSolutions object

Return type
(SDSolutions)

fixObjective(c, cx)
Enforce a certain objective function and value (or any other constraint of the form c*x <= cx)

populateZ(n)→ Tuple[List, int]
Populate MILP, and return only binary variables rounded to 5 decimals (should return ints)

resetObjective()

Reset objective to the one set upon MILP construction

126 Chapter 4. How to cite:

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

StrainDesign, Release 1.11

resetTargetableZ()

Reset targetable/switchable intervention indicators / allow all intervention candidates

sd2dict(sol, *args)→ Dict
Translate binary solution vector to dictionary for human-readable output

setMinIntvCostObjective()

Reset minimization of intervention costs as global objective

setTargetableZ(sol)
Only allow a subset of intervention candidates

solveZ()→ Tuple[List, int]
Solve MILP, and return only binary variables rounded to 5 decimals (should return ints)

verify_sd(sols)→ List
Verify computed strain design

straindesign.strainDesignModule

Class: strain design module (SDModule)

Module Contents

class straindesign.strainDesignModule.SDModule(model, module_type, *args, **kwargs)
Bases: straindesign.parse_constr.Dict

Strain design modules are used to specify the goal of a strain design computation

(Lists of) SDModule objects are passed to compute_strain_design to specify the goal strain design computation.
Strain design modules indicate the appraoch that should be used (OptKnock, RobustKnock, OptCouple or MCS)
and the parameters for each approach. In each strain design computation, one of the following modules can
be used at most once: OptKnock, RobustKnock and OptCouple. Additionally an arbitrary number of MCS
modules (PROTECT or SUPPRESS) may me used. The global objective of a strain design computation depends
on the specified modules. If an OptKnock or RobustKnock module is used, the global objective function will be
defined by ‘outer_objective’ and ‘outer_opt_sense’. If OptCouple is used, the global objective is derived from by
‘inner_objective’ and ‘inner_opt_sense’. If only MCS-like modules (suppress, protect) are used in a computation,
the number of interventions is globally minimized.

In the following, the modules and their mandatory/optional arguments are presented in detail.

OptKnock:
Globally maximize an outer objective subjected to the maximization/optimization of an inner objective.
For instance, maximize product synthesis, assuming that the strain maximizes its growth rate. When used
with the ‘best’ or ‘populate’ approach (see compute_strain_designs), this module will guarantee that the
found intervention set allows for the highest possible outer objective (e.g., production) under the premise
that the inner objective (growth) is forced to be maximal. This means that the production potential is
maximal. However it does not necessarily mean that production is enforced at high growth rates. For
enforced growth coupling, refer to the other module types. Additional constraints can be used to impose
certain properties on the designed strains: constraints=’growth >= 0.5’ will guarantee that the designed
strain can reach growth rates above 0.5. constraints=[‘growth >= 0.5’, ‘EX_byprod_e <= 2’] additionally
guarantees that the synthesis rate of a by-product stays below 2 at growth maximal flux states. Alternative
inner or outer objective functions (e.g., ATP maintenance) can be used for diffent types of strain design.

4.9. StrainDesign API 127

https://docs.python.org/3/library/functions.html#int

StrainDesign, Release 1.11

mandatory arguments: model, module_type=’optknock’, inner_objective, outer_objective optional argu-
ments: constraints, inner_opt_sense, outer_opt_sense, skip_checks (Detailed description of the arguments
follow below)

RobustKnock:
Globally minimize the maximum of an outer objective subjected to the maximization/optimization of an
inner objective. For instance, maximize the minimal product synthesis rate, assuming that the strain max-
imizes its growth rate. When used with the ‘best’ or ‘populate’ approach (see compute_strain_designs),
this module will guarantee that the found intervention set enforces that the minimum of the outer objective
(e.g., maximal production) is maximal (max-min), given that the inner objective (growth) is forced to be
maximal. This means that the minimal guaranteed production is maximal and production is guaranteed
at growth-maximal flux states. Additional constraints can be used to impose certain properties on the de-
signed strains: constraints=’growth >= 0.5’ will guarantee that the designed strain can reach growth rates
above 0.5/h. constraints=[‘growth >= 0.5’, ‘EX_byprod_e<=2’] additionally guarantees that the synthesis
rate of a by-product stays below 2 mmol/gCDW/h at growth maximal flux states.

mandatory arguments: model, module_type=’robustknock’, inner_objective, outer_objective optional ar-
guments: constraints, inner_opt_sense, outer_opt_sense, skip_checks, reac_ids (Detailed description of the
arguments follow below)

OptCouple:
Globally maximize the growth-coupling potential, that is, the difference between the maximal growth rate
without product synthesis and the maximum overall growth rate (with product synthesis). This strain design
approach often leads to directionally growth-coupled strain designs. Again, alternative definitions of this
objective are possible to, for instance, couple production to the synthesis of ATP. To specify the product
for which coupling should be engineered, the reaction identifier of the product exchange (pseudo)reaction
is passed through the prod_id parameter (see below). One may addidionally define a minimum growth-
coupling potential through the parameter min_gcp.

mandatory arguments: model, module_type=’optcouple’, inner_objective, prod_id optional arguments:
constraints, inner_opt_sense, min_gcp, skip_checks, reac_ids (Detailed description of the arguments follow
below)

Suppress:
MCS-like suppression of a subspace of all steady-state flux vectors. The ‘constraints’ parameter is used to
descirbe the flux states that should not be eliminated from the flux space. Depending on the goal of the
strain design computation, undesired flux states may be those with production of an undesired by-product,
low product synthesis rates, low product yields or even flux states with microbial growth. In addition to
constraints, an inner objective function can be defined that is enforced. In that case flux states are suppressed
that are optimal with respect to the specified inner objective function and additionally fulfil the specified
constraints. If the goal is to find minimal sets of knockouts that are lethal for an organism, one can use
a suppress module with the constraint parameter: constraints=’growth >= 0.01’. The algorithm will then
find thes smallest sets of knockouts that render flux states with growth >= 0.01 infeasible. If we take the
example of production strain design, one could use the suppress module to enforce a certain product yield
(prod/subst > min_yield) growth-maximal flux states. This can be done by defining an inner objective
function for optmizing growth and selecting a minimum production threshold to be attained at maximum
growth: inner_objective=’1.0 growth’, constraints=’EX_prod_e - min_yield*UP_subst_e <= 0’. If used
without any constraints, the suppress module ensures that the model is infeasible.

mandatory arguments: model, module_type=’suppress’ optional arguments: constraints, inner_objective,
inner_opt_sense, skip_checks, reac_ids (Detailed description of the arguments follow below)

Protect:
MCS-like protection of a subspace of all steady-state flux vectors. The ‘constraints’ parameter is used
to descirbe flux states that should become/stay feasible when/by introducing interventions. This can be
used to maintain or protect certain metabolic functions, like microbial growth, despite engineering a strain
for bioroduction. When provided with an inner objective, the protect module will ensure that flux vectors

128 Chapter 4. How to cite:

StrainDesign, Release 1.11

optimal with respect to the inner objective function will be able to fulfil the constraints set in the ‘constraints’
parameter. This can be used to design potentially growth-coupled strains with a minimum set of metabolic
interventions. As an example, if one uses the protect module to ensure that growth with rates above 0.1/h
remains feasible, one sets constraints=’growth >= -0.1’. If the goal is to ensure that product synthesis is
possible at rates of more than 5 mmol/gCDW/h at maximal growth, one sets: inner_objective=’1.0 growth’
and constraints=’EX_prod_e >= 5’. If used without any constraints, the protect module just ensures that
the model is feasible.

mandatory arguments: model, module_type=’protect’ optional arguments: constraints,inner_objective, in-
ner_opt_sense, skip_checks, reac_ids (Detailed description of the arguments follow below)

Example

m = SDModule(model,’optknock’,outer_objective=’growth’, inner_objective=’EX_etoh_e’, constraints=’growth
>= 0.2’)

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

Instead of a model, a dummy object can be used as long as it has the field ‘id’. If a dummy
is used, skip_checks=True must be used and a list of reaction ids must be provided through
reac_ids=*list_of_strings*.

• module_type (str) – A string that specifies the module type. Allowed values are ‘opt-
knock’, ‘robustknock’, ‘optcouple’, ‘protect’, ‘suppress’. Depending on the specified module
type, other parameters must be set accordingly (see description above).

• constraints (optional (str) or (list of str) or (list of [dict,str,
float])) – (Default: ‘’)

List of linear constraints to be used in the module, e.g., to be enforced, suppressed or taken
into account: signs + or -, scalar factors for reaction rates, inclusive (in)equalities and a float
value on the right hand side. The parsing of the constraints input allows for some flexibility.
Correct (and identical) inputs are, for instance: constraints=’-EX_o2_e <= 5, ATPM = 20’
or constraints=[‘-EX_o2_e <= 5’, ‘ATPM = 20’] or constraints=[[{‘EX_o2_e’:-1},’<=’,5],
[{‘ATPM’:1},’=’,20]]

• inner_objective (optional (str) or (dict)) – The linear inner objective func-
tion for any module type. This parameter is mandatory for OptKnock, RobustKnock and
OptCouple modules and optional for suppress and protect modules. If used, an optimiza-
tion is nested into the global problem. It can be used to account for the biological objec-
tive of growth (inner_objective=’BIOMASS_Ecoli_core_w_GAM’). Any linear expression
can be used as input, either as a single string or as a dict. Correct (and identical) inputs
are, for instance: inner_objective=’BIOMASS_Ecoli_core_w_GAM - 0.05 EX_etoh_e’ in-
ner_objective={‘BIOMASS_Ecoli_core_w_GAM’: 1, ‘EX_etoh_e’: -0.05}

• inner_opt_sense (optional (str)) – (Default: ‘maximize’)

Sense of the inner optimization (maximization or minimization). Allowed values are ‘mini-
mize’ and ‘maximize’.

• outer_objective (optional (str) or (dict)) – The linear outer objective func-
tion for any module type. This parameter is mandatory for OptKnock and Robust-
Knock and cannot be used with OptCouple, suppress and protect modules. If applied,
this objective function is used as the global objective function. In case of OptCou-
ple, the global objective is the maximization of the growth-coupling potential and the
outer objective is not specified manually. Typical outer objectives are the optimization

4.9. StrainDesign API 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

of product synthesis (outer_objective=’BIOMASS_Ecoli_core_w_GAM’), but also com-
binations of product synthesis and growth are possible. Any linear expression can be
used as input, either as a single string or as a dict. Correct (and identical) inputs
are, for instance: outer_objective=’BIOMASS_Ecoli_core_w_GAM + 0.1 EX_prod_e’
outer_objective={‘BIOMASS_Ecoli_core_w_GAM’: 1, ‘EX_prod_e’: 0.1}

• outer_opt_sense (optional (str)) – (Default: ‘maximize’)

Sense of the outer optimization (maximization or minimization). Allowed values are ‘mini-
mize’ and ‘maximize’.

• prod_id (optional (str) or (dict)) – The reaction id of the product of interest. This
parameter is only used in OptCouple strain design and will have no effect as part of any
other module. Permitted is any linear expression either in the form of a string or as a dict:
prod_id=’EX_etoh’ prod_id={‘EX_etoh’: 1}

• min_gcp (optional (float)) – (Default: 0.0)

Minimial growth-coupling potential (GCP). I.e., the minimum difference between maximum
growth with and without production. In practice there are two nested optimizations, one that
optimizes inner_objective and one that optimizes inner_objective and additionally demands
that the constraint: prod_id=0 holds. Therefore, min_gcp presents the minimum enforced
growth-coupling potential, so, a minimum objective value. This parameter is supposed to be
used with the ‘any’ approach and has (virtually) no effect when used with ‘best’ or ‘populate’,
since GCP is maximized anyway.

• skip_checks (optional (bool)) – (Default: False)

Skip the module verification. If checks are not skipped, the constructor will verify, if the
module is feasible with the original model, that is, if all entered parameters parse correctly
and if the given sets of constraints can be applied on the model without rendering it infeasible.
Finally, it throws an error if the trivial 0-vector is feasible in the subspaces defined by a
suppress or protect module, since the user should ensure that the 0-vector is excluded from
these subspaces (see online documentation for detail).

Returns
A strain design module object that can be used with the function compute_strain_design. Multi-
ple modules can be used to specify a strain design problem.

Return type
(SDModule)

Initialize self. See help(type(self)) for accurate signature.

copy()

Create a deep copy of a strain design module.

straindesign.strainDesignProblem

Classes and functions for the construction of strain design MILPs

This module contains functions that help construct mixed-integer linear problems, mainly functions that facilitate the
construction of LP and Farkas dual problems from linear problems of the type A_ineq*x<=b_ineq, A_eq*x<=b_eq,
lb<=x<=ub. The functions also help keeping track of the relationship of constraints and variables and their individual
counterparts in dual problems, which is essential when simulating knockouts in dual problems. Most of the time, the
sparse datatype is used to store and edit matrices for improved speed and memory.

130 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

StrainDesign, Release 1.11

Module Contents

class straindesign.strainDesignProblem.ContMILP(A_ineq, b_ineq, A_eq, b_eq, lb, ub, c,
z_map_constr_ineq, z_map_constr_eq, z_map_vars)

Continuous representation of the strain design MILP.

This MILP can be used to verify computation results. Since this class also stores the relationship between in-
tervention variables z and corresponding (in)equality constraints and variables in the problem, it can be used to
verify computed designs quickly and in a numerically stable manner.

class straindesign.strainDesignProblem.SDProblem(model: cobra.Model, sd_modules:
List[straindesign.SDModule], *args, **kwargs)

Strain design MILP

The construcor of this class translates a model and strain design modules into a mixed integer linear problem. This
class, however, is the backbone of the strain design computation. Preprocessing steps that enable gene, reaction
and regulatory interventions, or network compression usually preceed the construction of an SDProblem-object
and are integrated in the function compute_strain_designs.

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

• sd_modules ((list of) straindesign.SDModule) – Modules that specify the strain
design problem, e.g., protected or suppressed flux states for MCS strain design or inner and
outer objective functions for OptKnock. See description of SDModule for more information
on how to set up modules.

• ko_cost (optional (dict)) – (Default: None) A dictionary of reaction identifiers and
their associated knockout costs. If not specified, all reactions are treated as knockout can-
didates, equivalent to ko_cost = {‘r1’:1, ‘r2’:1, . . . }. If a subset of reactions is listed in the
dict, all other are not considered as knockout candidates.

• ki_cost (optional (dict)) – (Default: None) A dictionary of reaction identifiers and
their associated costs for addition. If not specified, all reactions are treated as knockout can-
didates. Reaction addition candidates must be present in the original model with the intended
flux boundaries after insertion. Additions are treated adversely to knockouts, meaning that
their exclusion from the network is not associated with any cost while their presence entails
intervention costs.

• max_cost (optional (int)) – (Default: inf): The maximum cost threshold for interven-
tions. Every possible intervention is associated with a cost value (1, by default). Strain
designs cannot exceed the max_cost threshold. Individual intervention cost factors may be
defined through ki_cost and ko_cost.

• solver (optional (str)) – (Default: same as defined in model / COBRApy) The solver
that should be used for preparing and carrying out the strain design computation. Allowed
values are ‘cplex’, ‘gurobi’, ‘scip’ and ‘glpk’.

• M (optional (int)) – (Default: None) If this value is specified (and non-zero, not None),
the computation uses the big-M method instead of indicator constraints. Since GLPK does
not support indicator constraints it uses the big-M method by default (with COBRA stan-
dard M=1000). M should be chosen ‘sufficiently large’ to avoid computational artifacts and
‘sufficiently small’ to avoid numerical issues.

• essential_kis (optional (set)) – A set of reactions that are marked as addable and
that are essential for at least one of the strain design modules. Providing such “essential
knock-ins” may speed up the strain design computation.

4.9. StrainDesign API 131

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set

StrainDesign, Release 1.11

Returns
An instance of SDProblem containing the strain design MILP

Return type
(SDProblem)

addModule(sd_module)
Generate module LP and z-linking-matrix for each module and add them to the strain design MILP

Parameters
sd_module (straindesign.SDModule) – Modules to describe strain design problems like
protected or suppressed flux states for MCS strain design or inner and outer objective func-
tions for OptKnock. See description of SDModule for more information on how to set up
modules.

link_z()

Connect binary intervention variables to variables and constraints of the strain design problem

Function that uses the maps between intervention indicators z and variables and constraints of the linear
strain design (in)equality system (self.z_map_constr_ineq, self.z_map_constr_eq and self.z_map_vars) to
set up the strain design MILP.

MILP construction uses the following steps:

(1) Translate equality-KOs/KIs to two inequality-KOs/KIs

(2) Translate variable-KOs/KIs to inequality-KIs/KOs

(3) Try to bound the problem with LPs

(4) Use LP-determined bounds to link z-variables, where such bounds were found

(5) Translate remaining inequalities back to equalities when possible and link z via indicator constraints.
If necessary, the solver interface will translate them to big-M constraints. (6) Remove redundant equalities
from static problem

straindesign.strainDesignProblem.LP_dualize(A_ineq_p, b_ineq_p, A_eq_p, b_eq_p, lb_p, ub_p, c_p,
z_map_constr_ineq_p=None, z_map_constr_eq_p=None,
z_map_vars_p=None)→ Tuple[scipy.sparse.csr_matrix,
Tuple, scipy.sparse.csr_matrix, Tuple, Tuple, Tuple,
scipy.sparse.csr_matrix, scipy.sparse.csr_matrix,
scipy.sparse.csr_matrix]

Translate a primal system to its LP dual system

The primal system must be given in the standard form: A_ineq x <= b_ineq, A_eq x = b_eq, lb <= x < ub,
min{c’x}. The LP duality theorem defines a set of two problems. If one of the LPs is a maximization and and
optimum exists, the optimal value of this LP is identical to the minimal optimum of its LP dual problem. LP
duality can be used for nested optimization, since solving the primal and the LP dual problem, while enfocing
equality of the objective value, guarantees optimality.

Construction of the LP dual:
Variables translate to constraints:

x={R} -> = x>=0 -> >= (new constraint is multiplied with -1 to translate to <= e.g. -A_i’ y <= -c_i)
x<=0 -> <=

Constraints translate to variables:
= -> y={R} <= -> y>=0

Parameters

132 Chapter 4. How to cite:

StrainDesign, Release 1.11

• A_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-
tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• b_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-
tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• A_eq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vector
that describe the linear equalities of the primal LP A_eq_p*x <= b_eq_p

• b_eq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vector
that describe the linear equalities of the primal LP A_eq_p*x <= b_eq_p

• lb_p (list of float) – Upper and lower variable bounds in vector form.

• ub_p (list of float) – Upper and lower variable bounds in vector form.

• c_p (list of float) – The objective coefficient vector of the primal minimization-LP.
z_map_constr_ineq_p, z_map_constr_eq_p, z_map_vars_p

• z_map_constr_ineq (optional (sparse.csr_matrix)) – Matrices that contain the
relationship between metabolic reactions and different parts of the LP, such as reactions,
metabolites or other (in)equalities. These matrices help keeping track of the parts of the LP
that are affected by reaction knockouts and additions. When a reaction (i) knockout removes
the variable or constraint (j), the respective matrix contains a coefficient 1 at this position. -1
marks additions. E.g.: If the knockout of reaction i corresponds to the removal of inequality
constraint j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are pro-
vided, they are updated for the dualized LP, if not, the dual problem is constructed without
returning information about these relationships.

• z_map_constr_eq (optional (sparse.csr_matrix)) – Matrices that contain the rela-
tionship between metabolic reactions and different parts of the LP, such as reactions, metabo-
lites or other (in)equalities. These matrices help keeping track of the parts of the LP that are
affected by reaction knockouts and additions. When a reaction (i) knockout removes the
variable or constraint (j), the respective matrix contains a coefficient 1 at this position. -1
marks additions. E.g.: If the knockout of reaction i corresponds to the removal of inequality
constraint j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are pro-
vided, they are updated for the dualized LP, if not, the dual problem is constructed without
returning information about these relationships.

• z_map_vars (optional (sparse.csr_matrix)) – Matrices that contain the relationship
between metabolic reactions and different parts of the LP, such as reactions, metabolites or
other (in)equalities. These matrices help keeping track of the parts of the LP that are affected
by reaction knockouts and additions. When a reaction (i) knockout removes the variable or
constraint (j), the respective matrix contains a coefficient 1 at this position. -1 marks addi-
tions. E.g.: If the knockout of reaction i corresponds to the removal of inequality constraint
j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are provided, they
are updated for the dualized LP, if not, the dual problem is constructed without returning
information about these relationships.

Returns
(Tuple): The LP dual of the problem in the format: A_ineq, b_ineq, A_eq, b_eq, c, lb, ub and optionally
also z_map_constr_ineq, z_map_constr_eq, z_map_vars

4.9. StrainDesign API 133

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

straindesign.strainDesignProblem.build_primal_from_cbm(model, V_ineq=None, v_ineq=None,
V_eq=None, v_eq=None, c=None)→
Tuple[scipy.sparse.csr_matrix, Tuple,
scipy.sparse.csr_matrix, Tuple, Tuple, Tuple,
scipy.sparse.csr_matrix,
scipy.sparse.csr_matrix,
scipy.sparse.csr_matrix]

Builds primal LP from constraint-based model and (optionally) additional constraints.

standard form: A_ineq x <= b_ineq, A_eq x = b_eq, lb <= x <= ub, min{c’x}. Additionally, this function also
returns a set of matrices that associate each variable (and constraint) with reactions. In the primal problems all
variables correspond to reactions (z), therefore, the z_map_vars matrix is an identity matrix. The constraints
correspond to metabolites, thus z_map_constr_ineq, z_map_constr_eq are all-zero.

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class

• V_ineq (sparse.csr_matrix, list of float) – Linear inequality constraints of the
form V_ineq*x <= v_ineq. Ensure that the number of columns in V_ineq is identical to the
number of reactions in the model.

• v_ineq (sparse.csr_matrix, list of float) – Linear inequality constraints of the
form V_ineq*x <= v_ineq. Ensure that the number of columns in V_ineq is identical to the
number of reactions in the model.

• V_eq (sparse.csr_matrix, list of float) – Linear equality constraints of the form
V_eq*x = v_eq. Ensure that the number of columns in V_eq is identical to the number of
reactions in the model.

• v_eq (sparse.csr_matrix, list of float) – Linear equality constraints of the form
V_eq*x = v_eq. Ensure that the number of columns in V_eq is identical to the number of
reactions in the model.

• c (list of float) – Object coefficient vector (same lenght as variable vector).

Returns
A_ineq, b_ineq, A_eq, b_eq, lb, ub, c, z_map_constr_ineq, z_map_constr_eq, z_map_vars. A
constraint-based steady-state model in the form of a linear (in)equality system. The matrices
z_map_constr_ineq, z_map_constr_eq, z_map_vars contain the association between reactions
and different parts of the LP, such as reactions, metabolites or other (in)equalities.

Return type
(Tuple)

straindesign.strainDesignProblem.farkas_dualize(A_ineq_p, b_ineq_p, A_eq_p, b_eq_p, lb_p, ub_p,
z_map_constr_ineq_p=None,
z_map_constr_eq_p=None, z_map_vars_p=None)→
Tuple[scipy.sparse.csr_matrix, Tuple,
scipy.sparse.csr_matrix, Tuple, Tuple,
scipy.sparse.csr_matrix, scipy.sparse.csr_matrix,
scipy.sparse.csr_matrix]

Translate a primal system of linear (in)equality to its Farkas dual

The primal system must be given in the standard form: A_ineq x <= b_ineq, A_eq x = b_eq, lb <= x < ub.
Farkas’ lemma defines a set of two systems of linear (in)equalities of which exactly one is feasible. Since the
feasibility of one is a certificate for the infeasibility of the other one, this theorem can be used to set up problems
that imply the infeasibility and thus exclusion of a certain subspace. This priciple is used for MCS calculation
(the SUPPRESS module).

134 Chapter 4. How to cite:

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

Consider that the following is not implemented: In the case of (1) A x = b, (2) x={R}, (3) b~=0, Farkas’ lemma
is special, because b’y ~= 0 is required to make the primal infeasible instead of b’y < 0. 1. This does not occur
very often. 2. Splitting the equality into two inequalities that translate to y>=0 would be posible, and yield b’y
< 0 in the farkas’ lemma. Maybe splitting is required, but I actually don’t think so. Using the special case of b’y
< 0 for b’y ~= 0 should be enough.

Parameters
• A_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-

tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• b_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-
tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• A_eq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vector
that describe the linear equalities of the primal LP A_eq_p*x <= b_eq_p

• b_eq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vector
that describe the linear equalities of the primal LP A_eq_p*x <= b_eq_p

• lb_p (list of float) – Upper and lower variable bounds in vector form.

• ub_p (list of float) – Upper and lower variable bounds in vector form.

• z_map_constr_ineq (optional (sparse.csr_matrix)) – Matrices that contain the
relationship between metabolic reactions and different parts of the LP, such as reactions,
metabolites or other (in)equalities. These matrices help keeping track of the parts of the LP
that are affected by reaction knockouts and additions. When a reaction (i) knockout removes
the variable or constraint (j), the respective matrix contains a coefficient 1 at this position. -1
marks additions. E.g.: If the knockout of reaction i corresponds to the removal of inequality
constraint j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are pro-
vided, they are updated for the dualized LP, if not, the dual problem is constructed without
returning information about these relationships.

• z_map_constr_eq (optional (sparse.csr_matrix)) – Matrices that contain the rela-
tionship between metabolic reactions and different parts of the LP, such as reactions, metabo-
lites or other (in)equalities. These matrices help keeping track of the parts of the LP that are
affected by reaction knockouts and additions. When a reaction (i) knockout removes the
variable or constraint (j), the respective matrix contains a coefficient 1 at this position. -1
marks additions. E.g.: If the knockout of reaction i corresponds to the removal of inequality
constraint j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are pro-
vided, they are updated for the dualized LP, if not, the dual problem is constructed without
returning information about these relationships.

• z_map_vars (optional (sparse.csr_matrix)) – Matrices that contain the relationship
between metabolic reactions and different parts of the LP, such as reactions, metabolites or
other (in)equalities. These matrices help keeping track of the parts of the LP that are affected
by reaction knockouts and additions. When a reaction (i) knockout removes the variable or
constraint (j), the respective matrix contains a coefficient 1 at this position. -1 marks addi-
tions. E.g.: If the knockout of reaction i corresponds to the removal of inequality constraint
j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are provided, they
are updated for the dualized LP, if not, the dual problem is constructed without returning
information about these relationships.

Returns
(Tuple): The Farkas dual of the linear (in)equality system in the format: A_ineq, b_ineq, A_eq, b_eq, lb,
ub and optionally also z_map_constr_ineq, z_map_constr_eq, z_map_vars

4.9. StrainDesign API 135

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

straindesign.strainDesignProblem.prevent_boundary_knockouts(A_ineq, b_ineq, lb, ub,
z_map_constr_ineq, z_map_vars)→
Tuple[scipy.sparse.csr_matrix, Tuple,
Tuple, Tuple, scipy.sparse.csr_matrix]

Put negative lower bounds and positive upper bounds into (notknockable) inequalities

This is a helper function that puts negative lower bounds and positive upper bounds into (not-knockable) in-
equalities. Later on, one may simulate the knockouts by multiplying the upper and lower bounds with a binary
variable z. This functions prevents that

Parameters
• A_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-

tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• b_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-
tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• lb_p (list of float) – Upper and lower variable bounds in vector form.

• ub_p (list of float) – Upper and lower variable bounds in vector form.

• z_map_constr_ineq (optional (sparse.csr_matrix)) – Matrices that contain the
relationship between metabolic reactions and different parts of the LP, such as reactions,
metabolites or other (in)equalities. These matrices help keeping track of the parts of the LP
that are affected by reaction knockouts and additions. When a reaction (i) knockout removes
the variable or constraint (j), the respective matrix contains a coefficient 1 at this position. -1
marks additions. E.g.: If the knockout of reaction i corresponds to the removal of inequality
constraint j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are pro-
vided, they are updated. Otherwise, all reactions are assumed to be knockable and thus all
negative upper and positive lower bounds are translated into constraints.

• z_map_vars (optional (sparse.csr_matrix)) – Matrices that contain the relationship
between metabolic reactions and different parts of the LP, such as reactions, metabolites or
other (in)equalities. These matrices help keeping track of the parts of the LP that are affected
by reaction knockouts and additions. When a reaction (i) knockout removes the variable or
constraint (j), the respective matrix contains a coefficient 1 at this position. -1 marks addi-
tions. E.g.: If the knockout of reaction i corresponds to the removal of inequality constraint j,
there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are provided, they are
updated. Otherwise, all reactions are assumed to be knockable and thus all negative upper
and positive lower bounds are translated into constraints.

Returns
(Tuple): A linear (in)equality system in the format: A_ineq, b_ineq, A_eq, b_eq, lb, ub and optionally also
updated z_map_constr_ineq, z_map_constr_eq

straindesign.strainDesignProblem.reassign_lb_ub_from_ineq(A_ineq, b_ineq, A_eq, b_eq, lb, ub,
z_map_constr_ineq=None,
z_map_constr_eq=None,
z_map_vars=None)→
Tuple[scipy.sparse.csr_matrix, Tuple,
scipy.sparse.csr_matrix, Tuple, Tuple,
Tuple, scipy.sparse.csr_matrix,
scipy.sparse.csr_matrix]

Remove single constraints in A_ineq or A_eq in favor of lower and upper bounds on variables

Constraints on single variables instead translated into lower and upper bounds (lb, ub). This is useful to filter out
redundant bounds on variables and keep the (in)equality system concise. To avoid interference with the knock-

136 Chapter 4. How to cite:

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

out logic, negative upper bounds and positive lower bounds are not put into lb and ub, when reactions are flagged
knockable with z_map_vars.

Parameters
• A_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-

tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• b_ineq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vec-
tor that describe the linear inequalities of the primal LP A_ineq_p*x <= b_ineq_p

• A_eq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vector
that describe the linear equalities of the primal LP A_eq_p*x <= b_eq_p

• b_eq_p (sparse.csr_matrix and list of float) – A coefficient matrix and a vector
that describe the linear equalities of the primal LP A_eq_p*x <= b_eq_p

• lb_p (list of float) – Upper and lower variable bounds in vector form.

• ub_p (list of float) – Upper and lower variable bounds in vector form.

• z_map_constr_ineq (optional (sparse.csr_matrix)) – Matrices that contain the
relationship between metabolic reactions and different parts of the LP, such as reactions,
metabolites or other (in)equalities. These matrices help keeping track of the parts of the LP
that are affected by reaction knockouts and additions. When a reaction (i) knockout removes
the variable or constraint (j), the respective matrix contains a coefficient 1 at this position. -1
marks additions. E.g.: If the knockout of reaction i corresponds to the removal of inequality
constraint j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are pro-
vided, they are updated. Otherwise, all reactions are assumed to be notknockable and thus
all constraints on single variables put into lb and ub.

• z_map_constr_eq (optional (sparse.csr_matrix)) – Matrices that contain the rela-
tionship between metabolic reactions and different parts of the LP, such as reactions, metabo-
lites or other (in)equalities. These matrices help keeping track of the parts of the LP that are
affected by reaction knockouts and additions. When a reaction (i) knockout removes the
variable or constraint (j), the respective matrix contains a coefficient 1 at this position. -1
marks additions. E.g.: If the knockout of reaction i corresponds to the removal of inequality
constraint j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are pro-
vided, they are updated. Otherwise, all reactions are assumed to be notknockable and thus
all constraints on single variables put into lb and ub.

• z_map_vars (optional (sparse.csr_matrix)) – Matrices that contain the relationship
between metabolic reactions and different parts of the LP, such as reactions, metabolites or
other (in)equalities. These matrices help keeping track of the parts of the LP that are affected
by reaction knockouts and additions. When a reaction (i) knockout removes the variable or
constraint (j), the respective matrix contains a coefficient 1 at this position. -1 marks addi-
tions. E.g.: If the knockout of reaction i corresponds to the removal of inequality constraint
j, there is a matrix entry z_map_constr_ineq_(i,j) = 1. If these matrices are provided, they
are updated. Otherwise, all reactions are assumed to be notknockable and thus all constraints
on single variables put into lb and ub.

Returns
(Tuple): A linear (in)equality system in the format: A_ineq, b_ineq, A_eq, b_eq, lb, ub and optionally also
updated z_map_constr_ineq, z_map_constr_eq

straindesign.strainDesignProblem.worker_compute(i)→ Tuple[int, float]
Helper function for determining bounds on linear expressions

4.9. StrainDesign API 137

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

StrainDesign, Release 1.11

straindesign.strainDesignProblem.worker_init(A, A_ineq, b_ineq, A_eq, b_eq, lb, ub, solver)
Helper function for determining bounds on linear expressions

straindesign.strainDesignSolutions

Container for strain design solutions (SDSolutions)

Module Contents

class straindesign.strainDesignSolutions.SDSolutions(model, sd, status, sd_setup)
Bases: object

Container for strain design solutions

Objects of this class are returned by strain design computations. This class contains the metabolic interventions
on the gene, reaction or regulation level alongside with information about the strain design setup, including the
model used and the strain design modules. Strain design solutions can be accessed either through the fields or
through specific functions that preprocess or reformat strain designs for different purposes.

Instances of this class are not meant to be created by StrainDesign users.

Parameters
• model (cobra.Model) – A metabolic model that is an instance of the cobra.Model class.

• sd (list of dict) – A list of dicts every dict represents an intervention set. Keys in each
dict are reaction/gene identifiers and the associated value determines if it is added (1), not
added (0) or knocked out (-1). For regulatory interventions, (1) means active regulation and
(0) means regulatory intervention not added. These will be translated to True and False.

• status (str) – Status string of the computation (e.g.: ‘optimal’)

• sd_setup (dict) – A dictionary containing information about the problem setup. This dict
can/should contain the keys MODEL_ID, MODULES, MAX_SOLUTIONS, MAX_COST,
TIME_LIMIT, SOLVER, KOCOST, KICOST, REGCOST, GKICOST, GKOCOST

These entries can be set like this: sd_setup[straindesign.MODEL_ID] = model.id

Returns
(SDSolutions): Strain design solutions

get_gene_reac_sd_assoc(i=None)
Get reaction and gene-based strain design solutions, and show which reaction-based solution corresponds
to which gene-based.

Often the association is not 1:1 but n:1.

get_gene_reac_sd_assoc_mark_no_ki(i=None)
Get reaction and gene-based strain design solutions, but also tag knock-ins that were not made with a 0

Often the association is not 1:1 but n:1.

get_gene_sd(i=None)
Get gene-based strain design solutions

get_gene_sd_mark_no_ki(i=None)
Get gene-based strain design solutions, but also tag knock-ins that were not made with a 0

138 Chapter 4. How to cite:

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

StrainDesign, Release 1.11

get_num_sols()

Get number of solutions

get_reaction_sd(i=None)
Get reaction-based strain design solutions

Gene-based intervention sets are translated to the reaction level. This can be helpful to understand the
impact of gene interventions. GPR-rules are accounted for automatically.

get_reaction_sd_bnds(i=None)
Get reaction-based strain design solutions represented by upper and lower bounds

Knocked-out reactions will show as upper and lower bounds of zero.

get_reaction_sd_mark_no_ki(i=None)
Get reaction-based strain design solutions, but also tag knock-ins that were not made with a 0

This can be helpful to analyze gene intervention sets in original metabolic models. GPR-rules are accounted
for automatically.

get_strain_design_costs(i=None)
Get costs of i-th strain design or of all in a list

get_strain_designs(i=None)
Get i-th strain design (intervention set) or all in original format

classmethod load(filename)
Load strain design solutions from a file.

save(filename)
Save strain design solutions to a file.

straindesign.strainDesignSolutions.get_subset(sd, i)
SDSolutions internal function: getting a subset of solutions

straindesign.strainDesignSolutions.gpr_eval(cj_terms, interv)
SDSolutions internal function: evaluate a GPR term

straindesign.strainDesignSolutions.strip_non_ki(sd)
SDSolutions internal function: removing non-added reactions or genes

4.9.1.2 Package Contents

class straindesign.DisableLogger

Environment in which logging is disabled

4.9. StrainDesign API 139

StrainDesign, Release 1.11

140 Chapter 4. How to cite:

CHAPTER

FIVE

REFERENCES:

Ebrahim, A., Lerman, J.A., Palsson, B.O. et al. - COBRApy: COnstraints-Based Reconstruction and Analysis for
Python. BMC Syst Biol 7, 74 (2013)

Burgard, A. P., Pharkya, P., & Maranas, C. D. - Optknock: a bilevel programming framework for identifying gene
knockout strategies for microbial strain optimization. Biotechnology and bioengineering, 84(6), 647–657 (2003)

Tepper N., Shlomi T. - Predicting metabolic engineering knockout strategies for chemical production: accounting for
competing pathways, Bioinformatics. Volume 26, Issue 4, Pages 536–543 (2010)

Jensen K., Broeken V., Lærke Hansen A.S., et al. - OptCouple: Joint simulation of gene knockouts, insertions and
medium modifications for prediction of growth-coupled strain designs. Metabolic Engineering Communications, Vol-
ume 8 (2019)

Bestuzheva K., Besançon M., Chen W.K. et al. - The SCIP Optimization Suite 8.0. Available at Optimization Online
and as ZIB-Report 21-41, (2021)

Marco Terzer, Jörg Stelling, Large-scale computation of elementary flux modes with bit pattern trees, Bioinformatics,
Volume 24, Issue 19, (2008), Pages 2229–2235,

141

http://dx.doi.org/doi:10.1186/1752-0509-7-74
http://dx.doi.org/doi:10.1186/1752-0509-7-74
https://doi.org/10.1002/bit.10803
https://doi.org/10.1002/bit.10803
https://doi.org/10.1093/bioinformatics/btp704
https://doi.org/10.1093/bioinformatics/btp704
https://doi.org/10.1016/j.mec.2019.e00087
https://doi.org/10.1016/j.mec.2019.e00087
https://doi.org/10.1016/j.mec.2019.e00087
https://doi.org/10.48550/arXiv.2112.08872
https://doi.org/10.48550/arXiv.2112.08872
https://doi.org/10.1093/bioinformatics/btn401
https://doi.org/10.1093/bioinformatics/btn401

StrainDesign, Release 1.11

142 Chapter 5. References:

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

143

StrainDesign, Release 1.11

144 Chapter 6. Indices and tables

PYTHON MODULE INDEX

s
straindesign, 89
straindesign.compute_strain_designs, 89
straindesign.cplex_interface, 92
straindesign.efmtool, 94
straindesign.glpk_interface, 95
straindesign.gurobi_interface, 97
straindesign.indicatorConstraints, 100
straindesign.lptools, 101
straindesign.names, 106
straindesign.networktools, 107
straindesign.parse_constr, 113
straindesign.pool, 117
straindesign.scip_interface, 118
straindesign.solver_interface, 122
straindesign.strainDesignMILP, 124
straindesign.strainDesignModule, 127
straindesign.strainDesignProblem, 130
straindesign.strainDesignSolutions, 138

145

StrainDesign, Release 1.11

146 Python Module Index

INDEX

Symbols
__exit__() (straindesign.pool.SDPool method), 117

A
add_eq_constraints() (strainde-

sign.cplex_interface.Cplex_MILP_LP method),
92

add_eq_constraints() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

add_eq_constraints() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 98

add_eq_constraints() (strainde-
sign.scip_interface.SCIP_LP method), 118

add_eq_constraints() (strainde-
sign.scip_interface.SCIP_MILP method),
120

add_eq_constraints() (strainde-
sign.solver_interface.MILP_LP method),
123

add_exclusion_constraints() (strainde-
sign.strainDesignMILP.SDMILP method),
125

add_exclusion_constraints_ineq() (strainde-
sign.strainDesignMILP.SDMILP method),
125

add_ineq_constraints() (strainde-
sign.cplex_interface.Cplex_MILP_LP method),
93

add_ineq_constraints() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

add_ineq_constraints() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 98

add_ineq_constraints() (strainde-
sign.scip_interface.SCIP_LP method), 119

add_ineq_constraints() (strainde-
sign.scip_interface.SCIP_MILP method),
120

add_ineq_constraints() (strainde-

sign.solver_interface.MILP_LP method),
123

addExclusionConstraintIneq() (strainde-
sign.scip_interface.SCIP_MILP method),
120

addExclusionConstraintsIneq() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

addModule() (strainde-
sign.strainDesignProblem.SDProblem
method), 132

B
basic_columns_rat() (in module strainde-

sign.efmtool), 94
bound_blocked_or_irrevers_fva() (in module

straindesign.networktools), 108
build_primal_from_cbm() (in module strainde-

sign.strainDesignProblem), 133
build_sd_solution() (strainde-

sign.strainDesignMILP.SDMILP method),
125

C
ceil_dec() (in module straindesign.lptools), 101
clear_objective() (strainde-

sign.solver_interface.MILP_LP method),
123

close() (straindesign.pool.SDPool method), 117
compress_ki_ko_cost() (in module strainde-

sign.networktools), 108
compress_model() (in module strainde-

sign.networktools), 108
compress_model_efmtool() (in module strainde-

sign.networktools), 109
compress_model_parallel() (in module strainde-

sign.networktools), 109
compress_modules() (in module strainde-

sign.networktools), 109
compute() (straindesign.strainDesignMILP.SDMILP

method), 125

147

StrainDesign, Release 1.11

compute_optimal() (strainde-
sign.strainDesignMILP.SDMILP method),
126

compute_strain_designs() (in module strainde-
sign.compute_strain_designs), 89

ContMILP (class in straindesign.strainDesignProblem),
131

copy() (straindesign.strainDesignModule.SDModule
method), 130

Cplex_MILP_LP (class in straindesign.cplex_interface),
92

D
DisableLogger (class in straindesign), 139

E
enumerate() (straindesign.strainDesignMILP.SDMILP

method), 126
expand_sd() (in module straindesign.networktools), 110
extend_model_gpr() (in module strainde-

sign.networktools), 110
extend_model_regulatory() (in module strainde-

sign.networktools), 111

F
farkas_dualize() (in module strainde-

sign.strainDesignProblem), 134
fba() (in module straindesign.lptools), 101
filter_sd_maxcost() (in module strainde-

sign.networktools), 112
fixObjective() (strainde-

sign.strainDesignMILP.SDMILP method),
126

floor_dec() (in module straindesign.lptools), 102
fva() (in module straindesign.lptools), 102
fva_worker_compute() (in module strainde-

sign.lptools), 102
fva_worker_compute_glpk() (in module strainde-

sign.lptools), 102
fva_worker_init() (in module straindesign.lptools),

102
fva_worker_init_glpk() (in module strainde-

sign.lptools), 103

G
get_gene_reac_sd_assoc() (strainde-

sign.strainDesignSolutions.SDSolutions
method), 138

get_gene_reac_sd_assoc_mark_no_ki() (strain-
design.strainDesignSolutions.SDSolutions
method), 138

get_gene_sd() (strainde-
sign.strainDesignSolutions.SDSolutions
method), 138

get_gene_sd_mark_no_ki() (strainde-
sign.strainDesignSolutions.SDSolutions
method), 138

get_num_sols() (strainde-
sign.strainDesignSolutions.SDSolutions
method), 138

get_reaction_sd() (strainde-
sign.strainDesignSolutions.SDSolutions
method), 139

get_reaction_sd_bnds() (strainde-
sign.strainDesignSolutions.SDSolutions
method), 139

get_reaction_sd_mark_no_ki() (strainde-
sign.strainDesignSolutions.SDSolutions
method), 139

get_rids() (in module straindesign.parse_constr), 113
get_strain_design_costs() (strainde-

sign.strainDesignSolutions.SDSolutions
method), 139

get_strain_designs() (strainde-
sign.strainDesignSolutions.SDSolutions
method), 139

get_subset() (in module strainde-
sign.strainDesignSolutions), 139

getSolution() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

getSolution() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 98

getSolution() (strainde-
sign.scip_interface.SCIP_MILP method),
120

getSolutions() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 99

GLPK_MILP_LP (class in straindesign.glpk_interface), 95
gpr_eval() (in module strainde-

sign.strainDesignSolutions), 139
Gurobi_MILP_LP (class in strainde-

sign.gurobi_interface), 97

I
idx2c() (in module straindesign.lptools), 103
IndicatorConstraints (class in strainde-

sign.indicatorConstraints), 100

J
jBigFraction2sympyRat() (in module strainde-

sign.efmtool), 94
jBigIntegerPair2sympyRat() (in module strainde-

sign.efmtool), 94
jpypeArrayOfArrays2numpy_mat() (in module strain-

design.efmtool), 94

148 Index

StrainDesign, Release 1.11

L
lineq2list() (in module straindesign.parse_constr),

114
lineq2mat() (in module straindesign.parse_constr),

114
lineqlist2mat() (in module strainde-

sign.parse_constr), 114
lineqlist2str() (in module strainde-

sign.parse_constr), 115
linexpr2dict() (in module straindesign.parse_constr),

115
linexpr2mat() (in module straindesign.parse_constr),

115
linexprdict2mat() (in module strainde-

sign.parse_constr), 116
linexprdict2str() (in module strainde-

sign.parse_constr), 116
link_z() (straindesign.strainDesignProblem.SDProblem

method), 132
load() (straindesign.strainDesignSolutions.SDSolutions

class method), 139
LP_dualize() (in module strainde-

sign.strainDesignProblem), 132

M
MILP_LP (class in straindesign.solver_interface), 122
module

straindesign, 89
straindesign.compute_strain_designs, 89
straindesign.cplex_interface, 92
straindesign.efmtool, 94
straindesign.glpk_interface, 95
straindesign.gurobi_interface, 97
straindesign.indicatorConstraints, 100
straindesign.lptools, 101
straindesign.names, 106
straindesign.networktools, 107
straindesign.parse_constr, 113
straindesign.pool, 117
straindesign.scip_interface, 118
straindesign.solver_interface, 122
straindesign.strainDesignMILP, 124
straindesign.strainDesignModule, 127
straindesign.strainDesignProblem, 130
straindesign.strainDesignSolutions, 138

modules_coeff2float() (in module strainde-
sign.networktools), 112

modules_coeff2rational() (in module strainde-
sign.networktools), 112

N
numpy_mat2jpypeArrayOfArrays() (in module strain-

design.efmtool), 94

P
parse_constraints() (in module strainde-

sign.parse_constr), 116
parse_linexpr() (in module strainde-

sign.parse_constr), 117
plot_flux_space() (in module straindesign.lptools),

103
populate() (strainde-

sign.cplex_interface.Cplex_MILP_LP method),
93

populate() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

populate() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 99

populate() (straindesign.solver_interface.MILP_LP
method), 123

populateZ() (straindesign.strainDesignMILP.SDMILP
method), 126

postprocess_reg_sd() (in module strainde-
sign.compute_strain_designs), 91

prevent_boundary_knockouts() (in module strainde-
sign.strainDesignProblem), 135

R
reassign_lb_ub_from_ineq() (in module strainde-

sign.strainDesignProblem), 136
remove_blocked_reactions() (in module strainde-

sign.networktools), 112
remove_conservation_relations() (in module

straindesign.networktools), 112
remove_dummy_bounds() (in module strainde-

sign.networktools), 112
remove_ext_mets() (in module strainde-

sign.networktools), 112
remove_irrelevant_genes() (in module strainde-

sign.networktools), 112
resetObjective() (strainde-

sign.strainDesignMILP.SDMILP method),
126

resetTargetableZ() (strainde-
sign.strainDesignMILP.SDMILP method),
126

S
save() (straindesign.strainDesignSolutions.SDSolutions

method), 139
SCIP_LP (class in straindesign.scip_interface), 118
SCIP_MILP (class in straindesign.scip_interface), 119
sd2dict() (straindesign.strainDesignMILP.SDMILP

method), 127
SDMILP (class in straindesign.strainDesignMILP), 124

Index 149

StrainDesign, Release 1.11

SDModule (class in straindesign.strainDesignModule),
127

SDPool (class in straindesign.pool), 117
SDProblem (class in straindesign.strainDesignProblem),

131
SDSolutions (class in strainde-

sign.strainDesignSolutions), 138
select_solver() (in module straindesign.lptools), 104
set_ineq_constraint() (strainde-

sign.cplex_interface.Cplex_MILP_LP method),
93

set_ineq_constraint() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

set_ineq_constraint() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 99

set_ineq_constraint() (strainde-
sign.scip_interface.SCIP_MILP method),
121

set_ineq_constraint() (strainde-
sign.solver_interface.MILP_LP method),
123

set_objective() (strainde-
sign.cplex_interface.Cplex_MILP_LP method),
93

set_objective() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

set_objective() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 99

set_objective() (strainde-
sign.scip_interface.SCIP_LP method), 119

set_objective() (strainde-
sign.scip_interface.SCIP_MILP method),
121

set_objective() (strainde-
sign.solver_interface.MILP_LP method),
123

set_objective_idx() (strainde-
sign.cplex_interface.Cplex_MILP_LP method),
93

set_objective_idx() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
96

set_objective_idx() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 99

set_objective_idx() (strainde-
sign.scip_interface.SCIP_LP method), 119

set_objective_idx() (strainde-
sign.scip_interface.SCIP_MILP method),
121

set_objective_idx() (strainde-
sign.solver_interface.MILP_LP method),
123

set_time_limit() (strainde-
sign.cplex_interface.Cplex_MILP_LP method),
93

set_time_limit() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
97

set_time_limit() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 99

set_time_limit() (strainde-
sign.scip_interface.SCIP_MILP method),
121

set_time_limit() (strainde-
sign.solver_interface.MILP_LP method),
124

set_ub() (straindesign.cplex_interface.Cplex_MILP_LP
method), 93

set_ub() (straindesign.glpk_interface.GLPK_MILP_LP
method), 97

set_ub() (straindesign.gurobi_interface.Gurobi_MILP_LP
method), 99

set_ub() (straindesign.scip_interface.SCIP_MILP
method), 121

set_ub() (straindesign.solver_interface.MILP_LP
method), 124

setMinIntvCostObjective() (strainde-
sign.strainDesignMILP.SDMILP method),
127

setTargetableZ() (strainde-
sign.strainDesignMILP.SDMILP method),
127

slim_solve() (strainde-
sign.cplex_interface.Cplex_MILP_LP method),
93

slim_solve() (strainde-
sign.glpk_interface.GLPK_MILP_LP method),
97

slim_solve() (strainde-
sign.gurobi_interface.Gurobi_MILP_LP
method), 99

slim_solve() (straindesign.scip_interface.SCIP_LP
method), 119

slim_solve() (straindesign.scip_interface.SCIP_MILP
method), 121

slim_solve() (straindesign.solver_interface.MILP_LP
method), 124

solve() (straindesign.cplex_interface.Cplex_MILP_LP
method), 94

solve() (straindesign.glpk_interface.GLPK_MILP_LP
method), 97

solve() (straindesign.gurobi_interface.Gurobi_MILP_LP

150 Index

StrainDesign, Release 1.11

method), 99
solve() (straindesign.scip_interface.SCIP_LP method),

119
solve() (straindesign.scip_interface.SCIP_MILP

method), 121
solve() (straindesign.solver_interface.MILP_LP

method), 124
solve_MILP_LP() (strainde-

sign.glpk_interface.GLPK_MILP_LP method),
97

solveZ() (straindesign.strainDesignMILP.SDMILP
method), 127

stoichmat_coeff2float() (in module strainde-
sign.networktools), 113

stoichmat_coeff2rational() (in module strainde-
sign.networktools), 113

straindesign
module, 89

straindesign.compute_strain_designs
module, 89

straindesign.cplex_interface
module, 92

straindesign.efmtool
module, 94

straindesign.glpk_interface
module, 95

straindesign.gurobi_interface
module, 97

straindesign.indicatorConstraints
module, 100

straindesign.lptools
module, 101

straindesign.names
module, 106

straindesign.networktools
module, 107

straindesign.parse_constr
module, 113

straindesign.pool
module, 117

straindesign.scip_interface
module, 118

straindesign.solver_interface
module, 122

straindesign.strainDesignMILP
module, 124

straindesign.strainDesignModule
module, 127

straindesign.strainDesignProblem
module, 130

straindesign.strainDesignSolutions
module, 138

strip_non_ki() (in module strainde-
sign.strainDesignSolutions), 139

sympyRat2jBigIntegerPair() (in module strainde-
sign.efmtool), 94

V
verify_sd() (straindesign.strainDesignMILP.SDMILP

method), 127

W
worker_compute() (in module strainde-

sign.strainDesignProblem), 137
worker_init() (in module strainde-

sign.strainDesignProblem), 137

Y
yopt() (in module straindesign.lptools), 105

Index 151

	A COBRApy-based package for computational design of metabolic networks
	Installation:
	Developer Installation:
	JAVA_HOME path:

	Examples:
	How to cite:
	Solvers
	3rd party solver installation
	CPLEX
	Gurobi
	SCIP

	Solver selection

	Network Analysis
	Flux optimization (FBA/pFBA)
	Parsimonious FBA (pFBA)

	Flux variability analysis (FVA)
	Yield optimization
	Mathematical background

	Plotting the flux space
	Production Envelopes
	Yield Spaces
	Mixed Plots
	3D plots
	Interactive and animated 3D plots

	Computational strain design: Growth-coupled production (GCP)
	pGCP: potentially growth-coupled production
	wGCP: weakly growth-coupled production
	dGCP: directionally growth-coupled production
	SUCP: substrate-uptake-coupled production

	Minimal Cut Sets (MCS)
	Prerequisites
	1) Add and verify production pathway

	Example 1: Strain designs with a minimum product (1,4-butanediol) yield (SUCP strain design)
	Example 2: Enforce product (1,4-BDO) synthesis at all growth states (dGCP strain design)
	Example 3: Suppress flux states that are optimal with respect to a pre-defined objective function (wGCP strain design)
	Example 4: Protect flux states that are optimal with respect to a pre-defined objective function (pGCP strain design)
	Example 5: All single gene knockouts that prohibit growth (synthetic lethals).
	Example 6: Genome-scale strain designs with a minimum product (1,4-butanediol) yield (SUCP strain design)
	Example 7: Suppress flux states in a toy network
	Example 8: Suppress and protect flux states in a toy network
	Theoretical background

	Multi-level strain optimization approaches
	OptKnock
	Example 9: OptKnock strain design
	Example 10: OptKnock strain design with a tilted objective function
	Example 11: Genome-scale OptKnock strain design

	RobustKnock
	Example 12: RobustKnock strain design

	OptCouple
	Example 13: OptCouple strain design

	Combining nested optimization strain design with MCS
	Example 14: Combining OptKnock with a tilted objective function and the MCS approach

	Standalone network compression
	Standalone GPR-integraton
	Gene perturbation studies

	CNApy interface
	StrainDesign API
	straindesign
	Submodules
	straindesign.compute_strain_designs
	Module Contents

	straindesign.cplex_interface
	Module Contents

	straindesign.efmtool
	Module Contents

	straindesign.glpk_interface
	Module Contents

	straindesign.gurobi_interface
	Module Contents

	straindesign.indicatorConstraints
	Module Contents

	straindesign.lptools
	Module Contents

	straindesign.names
	straindesign.networktools
	Module Contents

	straindesign.parse_constr
	Module Contents

	straindesign.pool
	Module Contents

	straindesign.scip_interface
	Module Contents

	straindesign.solver_interface
	Module Contents

	straindesign.strainDesignMILP
	Module Contents

	straindesign.strainDesignModule
	Module Contents

	straindesign.strainDesignProblem
	Module Contents

	straindesign.strainDesignSolutions
	Module Contents

	Package Contents

	References:
	Indices and tables
	Python Module Index
	Index

